PREDICTION OF DIMETHYL ETHER DENSITY USING ARTIFICIAL NEURAL NETWORK

سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,408

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICHEC06_007

تاریخ نمایه سازی: 1 مهر 1388

چکیده مقاله:

In this work, the ability of Artificial Neural Network based on back-propagation algorithm to predicting of dimethyl ether density has been investigated. Several feed-forward neural network with different architectures were tried to determine the best network configuration. TheLevenberg-Marquardt algorithm is applied as the training rule. Comparisons of results show, a good agreement between experimental data and artificial neural network predictions. Results prove that artificial neural network can be a successful tool to effectively represent complex nonlinearsystems, if developed efficiently. An important feature of the model is its needlessness to anytheoretical knowledge or human experience during the network training process.

نویسندگان

M.R. Nikkholgh

Department of Chemical Engineering, Faculty of Engineering, Arak University,

A.R. Moghadassi

Department of Chemical Engineering, Faculty of Engineering, Arak University,

F. Parvizian

Department of Chemical Engineering, Faculty of Engineering, Arak University,

A.R. Agha Aminiha

Department of Chemical Engineering, Faculty of Engineering, Arak University,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Valles, H. R., A neural network method to predict activity ...
  • Bozorgmehry, R. B., Abdolahi, F., Moosavian, M. _ Characteriz ation ...
  • Biglin, M., Isobaric vapor-iquid equilibrium calculations of binary systems using ...
  • _ Zambrano, G., Development of Neural Network Models for the ...
  • Ganguly, S., Prediction of VLE data using radial basis function ...
  • Sozen, A., Arcakilioglu, E., Ozalp, M., Formulation based _ artificial ...
  • Dehghani, M.R., Modarress, H., Bakhshi, _ Modeling and prediction of ...
  • Hagan, M. T., Demuth, H. B., Beal, M., Neural Network ...
  • Demuth, H. Beale, M., Neural network toolbox for _ with ...
  • Sozen, A., Arcakilioglu, E., Ozalp, M., Investigation of thermodynamic properties ...
  • Richon, D., Laugier, S., Use of artificial neural networks for ...
  • The 6th lhterhatiohal Chehical Eigiheering Congress _ Exhibition (ICHEE 2009) ...
  • Gharbi, R., Estimating the isothermt compressibility coefficient of under saturated ...
  • Lang, R.I.W., A Future for Dynamic Neural Networks, Dept. Cybernetics, ...
  • Jorjani, E., Chehreh Chelgani, S. and Mesroghli, Sh., Application of ...
  • Christian Ihmels, E., Lemmon, Eric W., Experimental densities, vapor pressures, ...
  • Chouai, A., Laugier, S., Richon, D., Modeling of th ermodynamic ...
  • نمایش کامل مراجع