A NEW APPROACH FOR ESTIMATING COMPRESSIBILITY FACTOR OF NATURAL GAS BASED ON ARTIFICIAL NEURAL NETWORK
محل انتشار: ششمین کنگره بین المللی مهندسی شیمی
سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,929
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICHEC06_006
تاریخ نمایه سازی: 1 مهر 1388
چکیده مقاله:
In this work, the ability of Artificial Neural Network or ANN based on back-propagation algorithm to modeling and predicting of compressibility factor of natural gas has been investigated. The MSE analysis based on results, are used to verifying the suggested approach. Results show, a good agreement between experimental data and ANN predictions. An important feature of the model is its needlessness to any theoretical knowledge or human experience during the training process. This work clearly shows the ability of ANN on calculating z-factor for natural gas only based on the experimental data, instead of using equations of state.
کلیدواژه ها:
نویسندگان
M.R. Nikkholgh
Department of Chemical Engineering, Faculty of Engineering, Arak University,
A.R. Moghadassi
Department of Chemical Engineering, Faculty of Engineering, Arak University,
F. Parvizian
Department of Chemical Engineering, Faculty of Engineering, Arak University,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :