A new multiclass embedded feature selection method using genetic algorithm and fuzzy clustering
محل انتشار: چهاردهمین کنفرانس سیستم های فازی ایران
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 619
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICFUZZYS14_063
تاریخ نمایه سازی: 21 اردیبهشت 1397
چکیده مقاله:
In this paper, we propose an embedded subset selection method based on minimum redundancy–maximum relevance criterion, which uses Pierson s correlation coefficient criterion in redundancy and accuracy of nearest neighbor classification in relevancy. In this method first some features with low sensitivity are eliminated then remainder of original feature subset is used in subset selection process which uses genetic algorithm. Sensitivity of features shows correlation of each feature with target. The proposed method is tested over several well-known benchmarking datasets. The performance of the proposed algorithm is also compared with some recent hybrid filter–wrapper algorithms. The results show that this method is competitive in terms of both classification accuracy and the number of selected features.
کلیدواژه ها:
نویسندگان
Soheila Barchinezhad
M. Sc. Student, Department of Electronic and Computer, Kerman Graduate University of Advanced Technology, Kerman, Iran,
Mahdi Eftekhari
Academic member, Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran,
Farzaneh Foroutan
M. Sc. Student, Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran,