A new multiclass embedded feature selection method using genetic algorithm and fuzzy clustering

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 619

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICFUZZYS14_063

تاریخ نمایه سازی: 21 اردیبهشت 1397

چکیده مقاله:

In this paper, we propose an embedded subset selection method based on minimum redundancy–maximum relevance criterion, which uses Pierson s correlation coefficient criterion in redundancy and accuracy of nearest neighbor classification in relevancy. In this method first some features with low sensitivity are eliminated then remainder of original feature subset is used in subset selection process which uses genetic algorithm. Sensitivity of features shows correlation of each feature with target. The proposed method is tested over several well-known benchmarking datasets. The performance of the proposed algorithm is also compared with some recent hybrid filter–wrapper algorithms. The results show that this method is competitive in terms of both classification accuracy and the number of selected features.

نویسندگان

Soheila Barchinezhad

M. Sc. Student, Department of Electronic and Computer, Kerman Graduate University of Advanced Technology, Kerman, Iran,

Mahdi Eftekhari

Academic member, Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran,

Farzaneh Foroutan

M. Sc. Student, Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran,