Effects of GDL porosity and fiber diameter on the performance of a PEM fuel cell by lattice Boltzmann method

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 511

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ETEC06_024

تاریخ نمایه سازی: 11 مرداد 1396

چکیده مقاله:

High power density, low operation temperature, high efficiency and low emissions have advantages of polymer electrolyte fuel cells (PEFCs) among all electrochemical power sources. In conventional numerical simulations of PEFCs the porous electrodes are considered as isotropic and homogeneous media, while in reality they have a complicated anisotropic and non-homogenous microstructure. Therefore, pore-scale modeling techniques such as lattice Boltzmann method (LBM), which are capable of considering anisotropy and non-homogeneity effects, have recently gained a great attention for PEFC simulations. However, PEFCs simulation by LBM has faced with some challenges in modeling electrochemical reactions in the catalyst layer. In the present study, a three-dimensional pore-scale model based on LBM is proposed for the cathode electrode of a PEFC in which the electrochemical reaction is taken into account for the first time also in this work investigated influence porosity and fiber diameter on the performance of a polymer electrolyte fuel cell (PEFC). The model enables us to simulate multi-species transport in a heterogeneous and anisotropic porous gas diffusion layer (GDL) through an active approach. After model validation, several simulations are performed to investigate the effects of GDL microstructure on the species and current density distributions. The results demonstrate that GDL microstructure has a considerable influence over the mentioned parameters

کلیدواژه ها:

نویسندگان

Gholamreza Molaeimanesh

Assistant Professor, Iran University of Science and Technology;

Mehran Nazemian

Master of Science student, Iran University of Science and Technology;

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. Park, X. Li, J. Power Sources 178 (2008) 248-257. ...
  • L. Hao, P. Cheng, J. Power Sources 186 (2009) 104-114. ...
  • L. Hao, P. Cheng, J. Power Sources 190 (2009) 435-446. ...
  • L. Hao, P. Cheng, J. Power Sources 195 (2010) 3870-3881. ...
  • L. Hao, P. Cheng, Int. J. Heat Mass Transfer 55 ...
  • No laeimanesh, G. R., M. H. Akbari, J. Power Sources ...
  • D. Froning, J. Brinkmann, U. Reimer, V. Schmidt, W. Lehnert, ...
  • N. Zamel, J. Becker, A. Wiegmann, J. Power Sources 207 ...
  • K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, J. Ohser, ...
  • _ Q. Zou, X. He, Phys. Fluids 9 (1997) 1591-1598. ...
  • F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Funda mentals ...
  • N.M. Mench, Fuel Cell Engines, first ed., John Wiley & ...
  • X. Li, Principles of Fuel Cells, first ed., Taylor and ...
  • A. Pa rthasarathy, S. Srinivasan, A.J. Appleby, C.R. Martin, J. ...
  • T. Berning, D.N. Lu, N. Djilali, J. Power Sources 106 ...
  • نمایش کامل مراجع