Prediction of TBM Penetration Rate with Generalized Regression Neural Network in Hard Rock Condition

سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,041

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCE08_067

تاریخ نمایه سازی: 28 آبان 1387

چکیده مقاله:

The prediction of performance of tunnel boring machines (TMB) penetration rate is important for project planning and selection of economic tunneling methods.This paper presents an attempt to predict penetration rate of TBM with a generalized regression neural network. The Queens Water tunnel data have been used to develop this network which includes three layers (input, hidden and output layers). The compressive trength, peak slope index, distance between planes of weakness and orientation of discontinuities in rock mass are chosen as input data penetration rata of TBM as output data. The results show that develop network is capable of predicting TBM penetration rata with correlation coefficient of ۰.۹۱۱. It was concluded that the penetration rata can be reliably estimated using the generalized neural network.

نویسندگان

REZA MIKAEIL

Faculty of mining , Petroleum & Geophysics, Shahrood University of tech, Daneshgah Blvd, shahrood, Iran

Omid Frough

Faculty of mining , Petroleum & Geophysics, Shahrood University of tech, Daneshgah Blvd, shahrood, Iran

Reza Khalokakaie

Faculty of mining , Petroleum & Geophysics, Shahrood University of tech, Daneshgah Blvd, shahrood, Iran

Mohammad Ataei

Faculty of mining , Petroleum & Geophysics, Shahrood University of tech, Daneshgah Blvd, shahrood, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alber, M., (1996).، Prediction _ penetration, utilization for hard rock ...
  • Barton N. (2000), ،، TBM tunnelling in jointed and faulted ...
  • Bruland A. (1998), ،Hard rock tunnel boring . Doctoral thesis, ...
  • Cheema S. (1999), «Development of a rock mass boreability index ...
  • Farmer IW, Glossop NH. (1980), ،، Mechanics of disc cutter ...
  • Gong Q.M, Zhao J, (2008), «Development of a rock mass ...
  • Graham PC. (1976), ،Rock exploration for machine _ ufacturers'. In: ...
  • Grima MA, Bruines PA, Verhoef PNW. (2000), «Modeling tunnel boring ...
  • Yagiz, S., (2002). «Development of rock fracture and brittleness indices ...
  • Yagiz, S., (2008). «Utilizing rock mass properties for predicting TBM ...
  • 1. Innaurato N, Mancini R, Rondena E, Zaninetti A. (1991), ...
  • McFeat- Smith I. (1999), ،Mechanised tunnelling for Asia?. Workshop manual, ...
  • Nelson PP. (1983), ،، Tunnel boring machine performance in sedimentary ...
  • Nelson PP, Yousof A Al-Jalil, Laughton C. (1999), «'Improved strategies ...
  • O'Rourke JE, Spring JE, Coudray SV. (1994), _، Geotechnical parameters ...
  • Rostami J. (1997), «Development of a force estimation model for ...
  • ' International Congress on Civil Engineering, May 11-13, 2009, Shiraz ...
  • May 11-13, 2009, Shiraz University, Shiraz, Iran ...
  • Sapigni M, Berti M, Bethaz E, Busillo A, Cardone G. ...
  • Sundaram NM, Rafek AG, Komoo I. (1998), ، The influence ...
  • Specht, D.F., (1991), ،A General Regression Neural Network?, IEEE Transactions ...
  • Hagan, M. T., H. B. Demuth, and M. H. Beale, ...
  • ' International Congress on Civil Engineering, May 11-13, 2009, Shiraz ...
  • نمایش کامل مراجع