Prediction of PVT properties of Ammonia by using Artificial Neural Network and equations of state
محل انتشار: دوازدهمین کنگره ملی مهندسی شیمی ایران
سال انتشار: 1387
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,159
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NICEC12_794
تاریخ نمایه سازی: 30 شهریور 1387
چکیده مقاله:
In this work a new method based on Artificial Neural Networks (ANN) for prediction of thermodynamic properties has been proposed for Ammonia. Knowledge of the thermodynamic properties of Ammonia is necessary for the interpretation of physical and chemical processes; because of it is an important gas that plays significant roles in many processes. For this development, the data sets that collected from Ammonia thermodynamic table [Perry’s Chemical Engineering Handbook] were used. After training the networks, the models were tested by unseen data to evaluate their accuracy and trend stability. Among this training the back-propagation learning algorithm with various training such as Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and Resilient Backpropagation (RP)
methods were used. The best suitable algorithm with appropriate number of seven neurons in the hidden layer which provides the minimum Mean Square Error (MSE), 0.0000900135, is found to be the SCG algorithm. Then ANN's results were compared with results of some equations of state such as Lee Kesler, NRTL, Soave-Redlich-Kwong and Peng Robinson. Comparisons showed the ANN capability for
prediction of the thermodynamic properties of Ammonia.
کلیدواژه ها:
نویسندگان
Amir Sharifi
Department of Chemical Engineering, Faculty of Engineering ,Farahan branch, Azad University, Arak
Abdolreza Moghadassi
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak
Fahime Parvizian
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak
SayedMohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :