Prediction of PVT properties of Ammonia by using Artificial Neural Network and equations of state

سال انتشار: 1387
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,159

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NICEC12_794

تاریخ نمایه سازی: 30 شهریور 1387

چکیده مقاله:

In this work a new method based on Artificial Neural Networks (ANN) for prediction of thermodynamic properties has been proposed for Ammonia. Knowledge of the thermodynamic properties of Ammonia is necessary for the interpretation of physical and chemical processes; because of it is an important gas that plays significant roles in many processes. For this development, the data sets that collected from Ammonia thermodynamic table [Perry’s Chemical Engineering Handbook] were used. After training the networks, the models were tested by unseen data to evaluate their accuracy and trend stability. Among this training the back-propagation learning algorithm with various training such as Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and Resilient Backpropagation (RP) methods were used. The best suitable algorithm with appropriate number of seven neurons in the hidden layer which provides the minimum Mean Square Error (MSE), 0.0000900135, is found to be the SCG algorithm. Then ANN's results were compared with results of some equations of state such as Lee Kesler, NRTL, Soave-Redlich-Kwong and Peng Robinson. Comparisons showed the ANN capability for prediction of the thermodynamic properties of Ammonia.

نویسندگان

Amir Sharifi

Department of Chemical Engineering, Faculty of Engineering ,Farahan branch, Azad University, Arak

Abdolreza Moghadassi

Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak

Fahime Parvizian

Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak

SayedMohsen Hosseini

Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H.R. Valles, A neural network method to predict activity coefficients ...
  • M. Biglin, Isobaric vapor-liquid equilibrium calculations of binary systems using ...
  • A. Chouai, D. Richon, S. Laugier, Modeling of thermo dynamic ...
  • S. Ganguly, Prediction of VLE data using radial basis function ...
  • R.B. B ozorgmehry, F. Abdolahi, M.A. Moosavian, C h aracterization ...
  • M.R. Dehghani, H. Modarress, A. Bakhshi, Modeling and prediction of ...
  • A. Sozen, E. Arcakilioglu, M. Ozalp, Formulation based on artificial ...
  • M.T. Hagan, H.B. Demuth, M. Beal, Neural Network Design, PWS ...
  • A. Sozen, E. Arcakilioglu, M. Ozalp, Investigation of thermodynamic properties ...
  • D. Richon, S. Laugier, Use of artificial neural networks for ...
  • R. Gharbi, Estimating the isothermal compressibility coefficient of under saturated ...
  • R.I.W. Lang, a Future for Dynamic Neural Networks, Dept. Cybernetics, ...
  • A. B. Bulsari., Neural Networks for Chemical Engineers. Amsterdam: Elsevier ...
  • H. Demuth, M. Beale, Neural Network Toolbox Users Guide, 2002. ...
  • E.A. Osman, M.A. Al-MArhoun, Using artificial neural networks to develop ...
  • R.H. Perry, Perrys chemical engineer's Handbook?, 7th ed., McGrow-Hill companies, ...
  • نمایش کامل مراجع