SDD: A Skin Detection Dataset for Training and Assessment of Human Skin Classifiers
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 955
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
KBEI02_018
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
Recently, skin segmentation has been utilized in wide variety of biometric applications including face detection, recognition, tracking, image filtering, archival and retrieval, etc. Along with its applications, different methods have been designed in order to segment pixels of an arbitrary image into skin and non-skin classes. However, there is no reliable, accurate, appropriate and applicatory dataset either to train or evaluate these algorithms. To this end, a comprehensive dataset, SDD, is introduced in this paper which addresses the limitations of former image libraries. SDD contains more than 20,000 color images accompanying with their manually annotated ground truth. It is suitable for assessment of skin classifiers since it is a very extensive database in which images are divided distinctively (very important from evaluation and training point of view) and it covers multifarious photos captured in all around the world in different conditions. In addition, unlike many other datasets with semi-automatic ground truth labeling, GTs in SDD are very precise thanks to the use of a professional graphical tool and more importantly, the idea of ternary division. The proposed database has been compared to SFA through which both qualitatively and quantitatively, the appealing features of the SDD are confirmed.
کلیدواژه ها:
نویسندگان
Mohammad Reza Mahmoodi
Department of Electrical and Computer Engineering University of California Santa Barbara, Santa Barbara, CA 93106, USA
Sayed Masoud Sayedi
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
Fariba Karimi
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
Zahra Fahimi
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :