A bi-objective Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,011

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICTMNGT02_140

تاریخ نمایه سازی: 22 آبان 1395

چکیده مقاله:

Cloud computing is the growth of distributed computing, parallel computing, utility computing and grid computing, or defined as the commercial implementation of these computer science theories. One of the fundamental issues in cloud environment is the task scheduling which plays the key role of efficiency of the whole cloud computing facilities. Scheduling maps the user’s tasks to resources to be executed efficiently in order to benefit both the service providers and customers. Since the cloud task scheduling is an NP-hard optimization problem, many meta-heuristic algorithms have been proposed to solve it. In this paper a policy based on particle swarm optimization compared with genetic algorithm and FCFS, has been introduced. PSO is a population-based search algorithm based on the simulation of the social behavior of birds within the flock. The main goal in this research is minimizing the makespan and flowtime of a given tasks set. Proposed policy and two other algorithms have been simulated using Cloudsim toolkit package. The results showed that PSO performed better than genetic and FCFS algorithms

نویسندگان

Fatemeh Alizadeh

M.A student of computer architecture, Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Shahram Jamali

Associate professor Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili Ardabil, Iran

Soheila Sadeqi

Instructor Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili Ardabil, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • optimistic job scheduling strategy based on QoS for Cloud Computing". ...
  • Mell, P., Grance, T., 2011. _ NIST Definition of Cloud ...
  • Paul, M., Sanyal, G., 2012. "Survey and analysis of optimal ...
  • Jeyarani, R., Ram, R., Versants, Nagaveni, N., 2010. "Design and ...
  • Leey, G., Chunz, B., Randy H., 2011. _ H etero ...
  • Wang, Sh., Yan, K., Wang, Sh., 2011. "Ching-Wei Chen, "A ...
  • Peixoto, M.L.M., Santana, M.J., Estrella, J.C., Tavares, T.C., Kuehne, B.T., ...
  • Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P., 1983. "Optimization by ...
  • Holland, J.H., 1975. "Adaptation in Natural and Artificial Systems". Univ. ...
  • Bonabeau, E., Dorigo, M., Theraulaz, G., 2000. "Inspiration for Optimization ...
  • Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publishers. ...
  • Dueck, G, Scheuer, T., 1990. 0Threshold Accepting: A General Purpose ...
  • Kennedy, J., Eberhart, R.C., 1995. "Particle SWarm optimization". Proc, IEEE ...
  • In proceedings, Kennedy, J., berhart, R., "Particle SWarm optimization". Proceedings ...
  • Pierobom, J. L., Delgado, M. R., Kaestner C. A., 2011. ...
  • task scheduling algorithm based on PSO for grid computing". A؛ه ...
  • Izakian, H., Ladani, B. T., Zamanifar, K., Abraham, A., 2009. ...
  • Intelligent Computing and Integrated Systems (ICISS), Oct, pp. 673 - ...
  • نمایش کامل مراجع