A New Artificial Intelligence Method for Prediction of Diabetes Type2

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 781

فایل این مقاله در 12 صفحه با فرمت PDF و WORD قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CITCOMP01_124

تاریخ نمایه سازی: 16 شهریور 1395

چکیده مقاله:

Diabetes is a chronic illness without a conclusive cure, and is the most common cause of amputations, blindness, and chronic kidney failure, and an important risk factor in heart problems. The only hope for these patients is through proper care. The main difficulty, regarding this dangerous and destructive illness, is not detecting it in time, and generally, a weakness in detection. Hence, implementation of a method that can help in the detection of this illness is an important step toward the prevention and control of this illness, especially in the early stages. In this article, using adaptive neural fuzzy inference system (ANFIS), we have attempted to predict this illness. The speed and the validity of the suggested algorithm is more than the other smart methods used. The method proposed in this article, with a 10% validity increase during training and a 5% validity increase during experimentation has a better performance than previous smart methods

کلیدواژه ها:

Diabetes ، Adaptive neural fuzzy inference system ، Fuzzy data ، Fuzzy inference system ، neural network

نویسندگان

Samira Karabpour

Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran

Ahmad Jafarian

Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Pylarinos, D., Siderakis, K., Pyrgioti, E., Thalassinakis, E. and Vitellas, ...
  • Amiri, A. and Rafe, V. (2014). Hybrid Algorithm for Detecting ...
  • Kayaer, K., Yildrm, T. (2003). Medical diagnosis On Pima Indlian ...
  • Polat, K., Gines, S., Arslan, A. (2008). A cascade learning ...
  • Yldrm, E.G., Karahoca, A., Ugar, T. (2011). Dosage planning for ...
  • Thirugnanam, M., Kumar, P., Srivatsan, S.V., Nerlesh, C.R. (2012). Improving ...
  • Marateb, H. R., Mansourian, M., Faghihimani, E., Amini, M., Farina, ...
  • Torkestani, J.A., Pisheh, E.G. (2014). A learning automata-based blood glucose ...
  • Dazzi, D., Taddei, F., Gavarini, A., Uggeri, E., Negro, R., ...
  • Tchistiakova, E., Anderson, N.D., Greenwood, C.E., MacIntosh, B.J. (2014). Combined ...
  • Larijani, B., Zahedi, F., Aghakhani, SH. (2003). Epidemiology of Diabetes ...
  • Kuncheva, L.I., Steimann, F. (1999). Fuzzy diagnosis. Artificial intelligence in ...
  • Santhanam, T., Padmavathi, M.S. (2015). Application of K-Means and Genetic ...
  • Jaafar, S.F.B., Ali, D.M. (2005). September. Diabetes mellitus forecast using ...
  • Jiang, Y.. Zhou, Z.H. (2004). Editing training data for kNN ...
  • Su, J., Zhang, H. (2006). Full Bayesian network classifiers. In ...
  • Temurtas, H., Yumusak, N., Temurtas, F. (2009). A comparative study ...
  • Jang, J.S.R. (1993). ANFIS: adaptive -network-based fuzzy inference system. Systems, ...
  • Zini, G., d'Onofrio, G. (2003). Neural network in hematopoietic malignancies. ...
  • Aliev, R., Pedrycz, W., Fazlollahi, B., Huseynov, O.H., Alizadeh, A.V., ...
  • Mallat, S. (1999). A wavelet tour of signal processing. Academic ...
  • Acharjee, S., Ghosh, B., Al-Dhubiab, B.E., Nair, A.B. (2013). Understanding ...
  • نمایش کامل مراجع