Prediction of Water Quality of Ajichay River using developed Artificial Neural Network and Supporting Vector Machine Models

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 615

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICESCON03_084

تاریخ نمایه سازی: 16 شهریور 1395

چکیده مقاله:

International efforts have been launched to save the endangered Urmia Lake as one of the largest natural lake worldwide. Ajichay River located in East Azarbaijan province, Iran, is one of the main rivers discharging into this lake and, thus, its water quality can directly affect the Urmia Lake ecosystem and life. In this research, we develop and propose two new numerical packages on the basis of Artificial Neural Network (ANN) and Supporting Vector Machine (SVM) models to estimate the monthly Total Dissolved Solid (TDS) of Ajichay’s water. For the ANN calibration, the feed forward back prop (FFB) model is used to obtain a set of coefficients for a linear model, and the radial basic function (RBF) kernel was used for the SVM model. The input data sets of both ANN and SVM models consist of six water quality parameters: TDS, Mg, Na, Ca, Cl, and SO4 collected monthly over a period of 30 years at Vanyar station situated on the banks of Ajichay River. Both models can successfully predict the variability of water’s TDS, but the ANN model with R2=0.958 and RMSE=0.0043 has a more efficient and accurate estimation compared to the SVM model with R2= 0.84 and RMSE = 0.009.

نویسندگان

Mahdiye Janatkhah

Teacher at Islamic Azad University of Tabriz

Aida Bagheri Basmenji

M.sc. student of Tabriz University, Civil Engineering, Water Resources Engineering

Ebrahim Rahmani

Expert in water and wastewater

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Akhtar, M. K., Corzo, G. A., van Andel, S. J., ...
  • Bowden et al., 2005, Gavin J. Bowden, Graeme C. Dandy, ...
  • Chang, F., Tasi, Y., Chen, P., Coynel, A., & Vachaud, ...
  • Gazzaz, N., Yusoff, M.. Aris, A., Juahir, H., & Ramli, ...
  • He, J. (2013). Mixture model based multivariate statistical analysis of ...
  • Jannatkhah, M., Amini, A., Rahmani, E., & Shahriari, Z. (2015). ...
  • Liao Shi-Zhong, and Ding Li-zhong, (2009), _ imulataneous tuning of ...
  • Mageshkumar, P., Pradeep, T., 3Stalin John, M., Amal Raj, S., ...
  • Mehrdadi, N., Hasanlou, H., & Jafarzadeh, M. (2012). Simulation of ...
  • Misra, D., Oommen, T., Agarwal, A., Mishra, S. K., and ...
  • Nemati, S., Naghipour, L., & FazeliFard, M. (2014). Artificial neural ...
  • Palani, S., Liong, S., & Tkalich, P. (2008). An ANN ...
  • Pandey, A., P. Singh and L. Lyengar. 2007. Bacterial decolourisation ...
  • Prajithkumar, S., Verma, S., & Mahajan, B. (2015). Application of ...
  • Roebeling, P., Alves, _ Rocha, J., Brito, A., Almeida, P., ...
  • Sarala, T., & Kavitha, B. (2014). Prediction and simulation of ...
  • Tay, F. and Cao, L. (2001) Application of support vector ...
  • Thair, S. K., MJ, A. H., & S.M, A. (2014). ...
  • Thiessen, U. and Van Brakel, (2003), R.: Using support vector ...
  • Thoe, W., Gold, M., Griesbach, A., Grimmer, M., Taggart, M., ...
  • WU De-hui, and YANG Shi-yuan (2006) "A dynamic system identification ...
  • نمایش کامل مراجع