Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
سال انتشار: 1389
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 544
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACR-2-1_006
تاریخ نمایه سازی: 16 شهریور 1395
چکیده مقاله:
Clustering is the process of dividing a set of input data into a number ofsubgroups. The members of each subgroup are similar to each other but differentfrom members of other subgroups. The genetic algorithm has enjoyed manyapplications in clustering data. One of these applications is the clustering of images.The problem with the earlier methods used in clustering images was in selectinginitial clusters. In this article it has been tried to develop a set of populations (i.e.,cluster centers) using the clonal selection of artificial immune system, and to obtainthe final clustering of clusters and the main image among a large number of clustersthrough the use the K-means and the K- nearest neighbor algorithms. Moreover,chaotic model has also been used to create diversity both in the original populationand in the populations produced through the repetition of generations. Thealgorithms in the paper have been executed on satellite images; and theimplementation results showed that the algorithm works well.
کلیدواژه ها:
نویسندگان
Reza Javanmard Alitappeh
Islamic Azad University Sari Branch, Sari, Iran
Mohammad Mehdi Ebadzadeh
AmirKabir University, Tehran, Iran