A Comparative Classification of Approaches and Applications in Opinion Mining
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,034
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCC01_144
تاریخ نمایه سازی: 9 فروردین 1395
چکیده مقاله:
With the growing availability of online resources on Web and popularity of fast and rich resources of opinion sharing such as online review sites and personal blogs, opinion mining has become an interesting area of research. Opinion mining is a process that is used for automatic extaction ofknowledge from the opinion of others about some particular topic or problem. In addition, sentiment analysis, an application of natural language processing, has been witnessed a blooming interest over the past decades. Sentiment analysis is an extension of data mining that extracts and analyzes the unstructured data automatically. The aim of sentiment analysis and opinion mining is extraction of opinion from Web sites and classifying the polarity of text in terms of positive (good), negative or neutral (surprise). Mood mining causes make-decisions to be done automatically. The purpose of this study is to illustrate of the recent trend of research in the sentiment analysis and its related areas. In this paper, we survey various techniques of sentiment analysis and propose a new classification of these techniques. In the end, we present a comparative evaluation of such techniques in terms of accuracy, f-measure, and f-score.
کلیدواژه ها:
نویسندگان
Razieh Asgarnezhad
Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Keyvan Mohebbi
Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Mobarakeh, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :