ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

تشخیص امضا آفلاین با استفاده از روش شبکه های عصبی

سال انتشار: 1393
کد COI مقاله: TDCONF01_232
زبان مقاله: فارسیمشاهده این مقاله: 1,292
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 7 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله تشخیص امضا آفلاین با استفاده از روش شبکه های عصبی

الهام کشاورز - کارشناسی ارشد دانشگاه آزاد اسلامی واحد کازرون
جاسم جمالی - عضو هیئت علمی دانشگاه آزاد اسلامی واحد کازرون
علی رفیعی - عضو هیئت علمی دانشگاه آزاد اسلامی واحد کازرون

چکیده مقاله:

این واقعیت که امضا به طور گسترده به عنوان ابزاری برای تأیید شخصی استفاده می شود نیازی برای یک سیستم تایید خودکار به علت ناشی از عوارض جانبی به راحتی توسط کسانی که هویت را جعل می کنند و یا یک فرد را منظور می کنند سو استفاده قرار می گیرد. مقدار زیادی از کار در سطحی از شناسایی امضا آفلاین در طول چند دهه گذشته انجام شده است. تأیید و شناسایی می تواند آفلاین یا آنلاین بر اساس برنامه انجام شود. سیستم های آنلاین از اطلاعات پویا از یک امضا گرفته شده در همان زمانی که امضای ساخته می شود استفاده می کند. سیستم های آفلاین بر روی تصویر اسکن شده از امضا کار می کنند. در این مقاله، ما یک روش برای تأیید امضا ها به روش آفلاین با استفاده از مجموعه ای از ویژگی های هندسی که بر اساس شکل ساده استفاده شده است ارائه می دهیم. ویژگی های مورد استفاده عبارتند از: سطح، مرکز ثقل، خروج از مرکز، کشیدگی و چولگی. قبل از استخراج ویژگی، پیش پردازش از یک تصویر اسکن شده برای مجزا کردن قسمت امضا و حذف هر گونه نویزجعلی موجود ضروری است. این سیستم در ابتدا با استفاده از یک پایگاه داده از امضا های به دست آمده از آن دسته از افرادی که امضاهای آنها به وسیله ی سیستم تصدیق شده، آموزش دیده است. جزئیات پیش پردازش به خوبی ویژگی های به تصویر کشیده شده در بالا در سراسر بحث شرح داده شده است. شبکه های عصبی مصنوعی ( ANN) به منظور بررسی و طبقه بندی امضا استفاده شده اند: امضای اصلی و یا امضای جعلی، و نسبت طبقه بندی در حدود 93٪ کمتر از یک آستانه 90٪ می باشد جزئیات اجرا و نتایج شبیه سازی در این مقاله مورد بحث قرار گرفته است.

کلیدواژه ها:

روش آفلاین شناسایی امضا ، پردازش تصویر ، شبکه های عصبی

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا TDCONF01_232 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/362594/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
کشاورز، الهام و جمالی، جاسم و رفیعی، علی،1393،تشخیص امضا آفلاین با استفاده از روش شبکه های عصبی،اولین همایش ملی الکترونیکی پیشرفت های تکنولوژی در مهندسی برق، الکترونیک و کامپیوتر،اردبیل،https://civilica.com/doc/362594

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1393، کشاورز، الهام؛ جاسم جمالی و علی رفیعی)
برای بار دوم به بعد: (1393، کشاورز؛ جمالی و رفیعی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • B. Daya, S. Khawandi and M. Akoum, "Applying Neural Network ...
  • K.R. Radhika, M.K. Venkatesha and G.N. Sekhar, "Off-Line Signature Authentication ...
  • Reza Ebrahimpour, Ali Amiri, Masoom Nazari and Alireza Hajiany, "Robust ...
  • A. Piyush Shanker, A.N. Rajagopalan, "Off-line signature verification using DTW", ...
  • Alessandro Zimmer and Lee Luan Ling, ،Offline Signature Verification SystemBased ...
  • Ramachandra A C, Ravi J, K B Raja, Venugopal K ...
  • L.Basavaraj and R.D Sudhaker Samuel, "Offline-line Signature Verification and Recognition: ...
  • Abhay Bansal, Bharat Gupta, Gaurav Khandelwal, and Shampa Chakraverty, "Offline ...
  • Bassam Al-Mahadeen, Mokhled S. AlTarawneh and Islam H. AlTarawneh, "Signature ...
  • Mohammed A Abdala & Noor Ayad Yousif, "Offline Signature Recognition ...
  • Dr. Daramola Samuel, Prof. Ibiyemi Samuel, "Novel Feature Extraction Technique ...
  • Vu Nguyen, Michael Blumenstein, Graham Leedham, "Global Features for the ...
  • A. Alizadeh, T. Alizadeh, Z. Daei, "Optimal Threshold Selection for ...
  • Zhong-Hua Quan, Kun-Hong Liu, _ Online Signature Verification Based on ...
  • مدیریت اطلاعات پژوهشی

    صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
    این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: دانشگاه آزاد
    تعداد مقالات: 1,396
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    پشتیبانی