An improved structure models to explain retention behavior of atmospheric nanoparticles
محل انتشار: فصلنامه ارتباطات شیمی ایران، دوره: 2، شماره: 1
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 638
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ICC-2-1_006
تاریخ نمایه سازی: 18 تیر 1394
چکیده مقاله:
The quantitative structure-retention relationship (QSRR) of nanoparticles in roadside atmosphere against the comprehensive two-dimensional gas chromatography which was coupled to high-resolution time-of-flight mass spectrometry was studied. The genetic algorithm (GA) was employed to select the variables that resulted in the best-fitted models. After the variables were selected, the linear multivariate regressions [e.g. the partial least squares (PLS)] as well as the nonlinear regressions [e.g. the kernel PLS (KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN)] were utilized to construct the linear and nonlinear QSRR models. The correlation coefficient cross validation (Q^2) and relative error for test set L-M ANN model are 0.939 and 4.89, respectively. The resulting data indicated that L-M ANN could be used as a powerful modeling tool for the QSPR studies.
کلیدواژه ها:
نویسندگان
Sharmin Esmaeilpoor
Department of Chemistry, Payame Noor University, P.O. BOX ۱۹۳۹۵-۴۶۹۷ , Tehran, Iran
Zahra Shirzadi
Department of chemistry, Islamic Azad University, Shahreza Branch, Isfahan, Iran
Hadi Noorizadeh
Department of Chemistry, Payame Noor University, P.O. BOX ۱۹۳۹۵-۴۶۹۷ , Tehran, Iran