A memetic algorithm based on interval estimation for fuzzy c-means clustering of incomplete data

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,184

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MHAA01_055

تاریخ نمایه سازی: 17 اسفند 1393

چکیده مقاله:

Clustering as one of the most widely used techniques in data mining is only valid for complete data, while in real applications, many datasets suffer from incompleteness. In this paper a memetic algorithm for incomplete data fuzzy clustering based on the missing values interval estimation is presented. The proposed algorithm combines the genetic algorithm and an adaptive version of hill climbing method for imputing the missing attributes then performs fuzzy c-means approach on the refined data sets. Also, for enhancing the robustness of missing attributes representation, a dynamic approach is applied for determining the best number of data vectors for constructing missing values’ representing intervals. The experimental results for several UCI data sets and their comparison with other methods demonstrate the more efficiency of the proposed method in clustering incomplete data.

نویسندگان

Mansoureh Aghabeig

Department of Mathematics and Computer Science, Amirkabir University of Technology (Polytechnic Tehran), Tehran, Iran,