A novel algorithm applied to classify imbalanced data in Breast Cancer Dataset
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,311
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MHAA01_045
تاریخ نمایه سازی: 17 اسفند 1393
چکیده مقاله:
In today's world, the classification of imbalanced data is of great importance. Classifying such data is in a way that the class which is extremely important, in terms of Application Scope (minority class), includes fewer states compared to a class which is not (majority class). These datasets are called imbalanced data. Several methods have been proposed to classify these types of data. In the classification of these data, we are trying to increase the number of states of the minority class compared to majority class. In this paper, we suggest a new and effective algorithm in classification of 5-years data of cancer patients and there is an Imbalanced property in this dataset. The proposed algorithm is a combination of SMOTE algorithm, Imperialist Competitive Algorithm (ICA) and some well-known classifiers, and also to calculate the performance of the proposed method, some assessments such as GMean, Accuracy, Specificity, Sensitivity, have been used. The results show that combining the SMOTE+ICA+C5 algorithms would have the best result in the classification of imbalanced data. So this is an effective approach in imbalanced data classification.
کلیدواژه ها:
نویسندگان
Aref Tahmasb
Graduate student, Shahid Bahonar University of Kerman
Ali Akbar Niknafs
Assistant Professor, Shahid Bahonar University of Kerman
Hamid Mirvaziri
Assistant Professor, Shahid Bahonar University of Kerman
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :