بهبود کلاس بندی داده های نامتوازن با استفاده از ترکیب الگوریتم SMOTE و رقابت استعماری
محل انتشار: کنفرانس ملی علوم مهندسی، ایده های نو (۸)
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 2,507
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIHE08_396
تاریخ نمایه سازی: 13 آبان 1393
چکیده مقاله:
در دنیای امروز مسئله دسته بندی داده های نامتوازن از اهمیت خاصی برخوردار است. دسته بندی این داده ها به گونه ای هست که ، کلاسی که از نظر دامنه کاربرد اهمیت زیادی دارد( کلاس اقلیت) شامل تعداد حالات کمتری نسبت به کلاسی است که از اهمیت خاصی برخوردار نیست ( کلاس اکثریت) بهمجموعه این داده ها داده های نامتوازن می گویند. روش های مختلفی برای دسته بندی این نوع داده ها ارائه شده است. در دسته بندی این داده ها می کوشیم تا تعداد حالات کلاس اقلیت را نسبت به کلاس اکثریت افزایش دهیم. در این مقاله، ما پیشنهاد می کنیم یک الگوریتم جدید و موثر بر کلاس بندی داده های 5 سال بیماران سرطانی که در این دیتاست خاصیت نامتوازن بودن وجود دارد. الگوریتم پیشنهادی ترکیبی از الگوریتم های SMOTE ، الگوریتم رقابت اسعتماری ICA و برخی از کلاسیفایرهای مشهور است و همچنین برای محاسبه کارای الگوریتم پیشنهادی از ارزیاب هایی مانند Sensitivity, Specificity , Accuracy,GMean استفاده شده است. نتایج نشان می دهد که ترکیب الگوریتم های SMOTE+ICA+C5 بهترین نتیجه را در کلاس بندی داده های نامتوازن دارد. پس این یک رویکرد موثر در کلاس بندی داده های نامتوازن است.
کلیدواژه ها:
نویسندگان
عارف طهماسب
دانشجوی کارشناسی ارشد دانشگاه شهید باهنر
علی اکبر نیک نفس
استادیار دانشگاه شهید باهنر
حمید علی میروزیری
استادیار دانشگاه شهید باهنر
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :