Influence Maximization in Viral Marketing with Expert and InfluentialLeader Discovery Approach
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 985
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECDC08_034
تاریخ نمایه سازی: 6 آذر 1393
چکیده مقاله:
The appearance of social networks has been one of the most important events in the last decade. A social network is a network of interaction and communication whose nodes are its members and its edges are the relation between them. An outstanding concept in social networks is the concept of social influence which is of great significance. Social influence is the behavioral transformation in a person, caused by his/her relationship with other people, organizations and the network. Today, the concept of social influence is used in viral marketing. The aim of viral marketing is to find a small subset of influential users in the social networks for marketing a product The aim of this paper is to offer an algorithm in order to choose expert and influential users in social networks. This algorithm uses leader discovery method in social networks for choosing expert and influential users. This method chooses those users as the expert and influential leaders of the social networks, who are influential among the other members and also those users that have enough specialty and knowledge about the marketing product. Consequently, the process of selecting expert and influential users for the algorithm would be quick and also the selected leaders are influential and expert enough to do marketing and advertising in the social network
کلیدواژه ها:
نویسندگان
Neda Salehi Najaf Abadi
Department of Computer, Faculty of Engineering, University of Isfahan, Isfahan, Iran
Mohammad Reza Khayyambashi
Department of Computer, Faculty of Engineering, University of Isfahan, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :