A Method To Model And Forecast Seasonal Load Duration Curve

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,163

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

PSC29_291

تاریخ نمایه سازی: 6 آذر 1393

چکیده مقاله:

In power system studies, seasonal load duration curve (LDC) plays an important role in medium term horizon power system planning, reliability and energy markets studies, and economic analysis of electric power systems. Therefore, finding a simple and accurate model to forecast LDC is beneficial to network operators as well as market participants. This paper proposes a new framework to forecast seasonal LDC. As there are few contributions regarding forecasting curve time series, we redefine the problem of forecasting LDCs into a vector forecasting problem. In fact, we divide LDCs into three parts, and then, artificial neural network (ANN) engines are used to forecast future values of the three parts. The load data of Alberta electricity market from 2000 to 2013 is used to verify validity of the proposed method.

کلیدواژه ها:

artificial neural network (ANN) ، forecasting ، load duration curve (LDC) ، modeling ، seasonal load duration curve

نویسندگان

Mahtab Kaffash

Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran

Ali darudi

Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran

Navid Yektay

Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran

Mohammad Hossein Javidi

Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran