A Method To Model And Forecast Seasonal Load Duration Curve
محل انتشار: بیست و نهمین کنفرانس بین المللی برق
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,163
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSC29_291
تاریخ نمایه سازی: 6 آذر 1393
چکیده مقاله:
In power system studies, seasonal load duration curve (LDC) plays an important role in medium term horizon power system planning, reliability and energy markets studies, and economic analysis of electric power systems. Therefore, finding a simple and accurate model to forecast LDC is beneficial to network operators as well as market participants. This paper proposes a new framework to forecast seasonal LDC. As there are few contributions regarding forecasting curve time series, we redefine the problem of forecasting LDCs into a vector forecasting problem. In fact, we divide LDCs into three parts, and then, artificial neural network (ANN) engines are used to forecast future values of the three parts. The load data of Alberta electricity market from 2000 to 2013 is used to verify validity of the proposed method.
کلیدواژه ها:
artificial neural network (ANN) ، forecasting ، load duration curve (LDC) ، modeling ، seasonal load duration curve
نویسندگان
Mahtab Kaffash
Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran
Ali darudi
Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran
Navid Yektay
Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran
Mohammad Hossein Javidi
Faculty of engineering, PSRES Lab. Ferdowsi University of Mashhad (FUM) Mashhad, Iran