ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

سال انتشار: 1389
کد COI مقاله: JR_IJIEPR-21-3_004
زبان مقاله: انگلیسیمشاهد این مقاله: 357
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

Reza Samizadeh - Assistant Professor, Department of Industrial Engineering, Alzahra University, Tehran, IAN
Babak Ghelichkhani - Department of Information Technology, Tarbiat Modares University, Tehran, IRAN,

چکیده مقاله:

One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-based collaborative filtering is recommending items with the high accuracy and coverage degree. Nevertheless, some famous limitations are obstacles to meet them. They are Scalability, Sparseness and new item problems. Scalability problem can be handled with the use of Data Mining techniques like clustering. However, use of this technique often leads to the lower recommendation accuracy. Nevertheless, two other problems still remain. Involving Semantic knowledge can increase the performance of recommendation in sparseness and New-Item Problem conditions as well. This paper presents a new approach to deal with the drawbacks of user-based CF systems for web pages recommendation by Combination of Semantic Knowledge with Web Usage Mining (WUM). Semantic knowledge of web pages are extracted and subsequently incorporated into the navigation patterns of each cluster which obtained from clustering the access sessions to get the Semantic Patterns of each cluster. The cluster with the most relevant semantic pattern is chosen with the comparison of semantic representation of the active user session with the semantic patterns and the proper web pages are recommended based on a switching recommendation engine. This engine recommends a list of appropriate recommendations. Results of the implementation of this hybrid web recommender system indicates that this combined approach yields better results in both accuracy and coverage metrics and also has a considerable capability to handle collaborative filtering recommender system for its typical shortcomings.

کلیدواژه ها:

User-Based Collaborative Filtering, Hybrid Recommender system, Semantic Similarity, Scalability, Sparseness, New-Item Problem

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/281335/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Samizadeh, Reza و Ghelichkhani, Babak,1389,Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems,,,,,https://civilica.com/doc/281335

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1389, Samizadeh, Reza؛ Babak Ghelichkhani)
برای بار دوم به بعد: (1389, Samizadeh؛ Ghelichkhani)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 5,537
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی