Using Neural Network and Genetic Algorithm for Modeling and Multi-objective Optimal Heat Exchange through a Tube Bank
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 25، شماره: 4
سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 766
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-25-4_029
تاریخ نمایه سازی: 17 خرداد 1393
چکیده مقاله:
In this study, a multi-objective optimization technique was applied to predict the optimal design points of forced convective heat transfer in tubular arrangements upon the size, pitch and geometricconfigurations of a tube bank. It was used to gain the wide range of design point candidates, a novelmulti-objective and variable prediction model. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a minimum pressure loss. Gathering the required wide range of set of design information, anumerical simulation of various configurations of the elliptic tubular arrangements was performed using the FLUENT software. Afterwards, the group method of data handling (GMDH)-type neural network and the evolutionary algorithm (EAs) were used to model the effects of design parameters, i.e.horizontal diameter of ellipse (a), vertical diameter of ellipse (b), transverse pitch (Sn), and longitudinal pitch (Sp) on pressure loss (ΔP) and the temperature difference (ΔT) to achieve a meta- model through a prediction procedure using evolved GMDH neural network. Finally, the model was used to gain the multi-objective Pareto-curves to depict the optimal design zones
کلیدواژه ها:
نویسندگان
n Amani Fard
Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran
a Hajiloo
Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran
n Tohidi
Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran