Evaluation of Particle Swarm Optimization and Adaptive Genetic Algorithm for Motion Planning in Minimally Invasive Surgery
محل انتشار: اولین کنفرانس ملی مهندسی برق اصفهان
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,083
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISFAHANELEC01_053
تاریخ نمایه سازی: 23 اسفند 1392
چکیده مقاله:
This paper evaluates Adaptive Genetic Algorithm (AGA) and Particle Swarm Optimization (PSO) to find a timeoptimal quadratic polynomial trajectory of an anthropomorphic manipulator. This robot that is used in minimallyinvasive surgery (MIS) must achieve motions under the constraints of displacement, velocity, acceleration and jerk ofeach joint. The modeling and resolution of the constraints are presented. PSO and different selection methods of thegenetic algorithm are evaluated and compared in order to define the best one according to convergence speed andoptimal time. These methods can solve the premature convergence and slow convergence problems in MIS.Simulation and experimental results for the grasper of a compact laparoscopic surgical robot prototype system validatethe algorithms
کلیدواژه ها:
نویسندگان
A. Aminzadeh Ghavifekr
Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
A. Arjmandi
Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
K. Sehat
Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran