A Structural Equation Modeling Approach to Examine EFL Teachers’ Online Knowledge Sharing, Teaching Commitment, and Self-Efficacy
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 30
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EFL-10-1_006
تاریخ نمایه سازی: 11 شهریور 1404
چکیده مقاله:
Although teacher-related factors have been regarded as significant elements in shaping the educational system, there is a scarcity of research regarding the relationship between teachers’ online knowledge sharing, commitment, and teachers’ self-efficacy. In this study, a quantitative correlational methodology and structural equation modeling were employed to address the research hypotheses. To achieve this, ۱۱۳ English as a Foreign Language (EFL) teachers were selected through convenience sampling. Three questionnaires—namely, online knowledge sharing behavior, teaching commitment, and teachers' self-efficacy—were utilized to collect the data. The findings showed that knowledge sharing had a significant effect on teachers' commitment. Additionally, knowledge sharing had a significant effect on self-efficacy, which acted as a mediating variable. Furthermore, self-efficacy affected teachers' teaching commitment. Self-efficacy as a mediating variable strengthens the effect of knowledge sharing on teaching commitment. Overall, the findings supported the proposed hypothetical model of the variables. These results carry significance both theoretically and practically and provide valuable insights.
کلیدواژه ها:
نویسندگان
فرشاد پرهام نیا
Department of Knowledge and Information Science, Ker.C., Islamic Azad University, Kermanshah, Iran
مجید فرهیان
Department of ELT, Ker.C., Islamic Azad University, Kermanshah, Iran
میلاد شیخ بانویی
Department of ELT, Ker.C., Islamic Azad University, Kermanshah, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :