A Configurable Penalty System for Transportation Management: A University Campus Case Study
محل انتشار: اولین کنفرانس ملی دو سالانه کاربرد هوش مصنوعی در کنترل ترافیک با تاکید بر مدیریت شهری و جاده ای
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 15
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AITC01_004
تاریخ نمایه سازی: 30 فروردین 1404
چکیده مقاله:
Effective traffic management systems rely on a balance between penalties for violations and rewards for compliance, fostering a culture of responsibility and cooperation. In this paper, we present a configurable penalty system designed to address the unique traffic management challenges faced by university campuses. Our approach integrates advanced AI models, including YOLO-based object detection, to monitor and evaluate compliance with campus-specific traffic rules. The system dynamically assigns rewards and penalties based on real-time and historical data, promoting adherence while maintaining a supportive academic environment. To validate our system, we utilized real-world data from the University of Isfahan, demonstrating its effectiveness and adaptability. Furthermore, the system’s modular design allows for customization to broader contexts, such as public road traffic management.
کلیدواژه ها:
نویسندگان
Benyamin Zojaji
MDSE Research Group, Department of Software Engineering, University of Isfahan, Isfahan, Iran
Mohammadreza Sharbaf
MDSE Research Group, Department of Software Engineering, University of Isfahan, Isfahan, Iran
Mohammad-Sajad Kasaei
MDSE Research Group, Department of Software Engineering, University of Isfahan, Isfahan, Iran