مقایسه روش ماشین بردار پشتیبان و شبکه عصبی تابع بنیادی شعاعی در عیب یابی سازه ها
محل انتشار: هفتمین کنگره ملی مهندسی عمران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 926
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCCE07_1088
تاریخ نمایه سازی: 16 مهر 1392
چکیده مقاله:
طراحی یک سیستم هوشمند جهت عیب یابی و بررسی سلامت سازه ها به منظور جلوگیری از صدماتی که در آینده ممکن است رخ دهد، بسیار حائز اهمیت می باشد. در این تحقیق، از روش ماشین بردار پشتیبان (SVM) برای طراحی سیستم عیب یابی هوشمند سازه ها استفاده شده است. وظیفه سیستم عیب یاب، شناسایی محل و میزان آسیب ها در سازه ها می باشد. آسیب در سازه ها توسط کاهش سختی مدل شده و همچنین ازتغییرات فرکانس های سازه به عنوان ورودی سیستم عیب یاب استفاده می گردد. برای مقایسه کارایی سیستم مبتنی بر SVM ، نتایج حاصله از آن با سیستم مشابه مبتنی بر شبکه عصبی تابع بنیادی شعاعی (RBF) مقایسه شده است. نتایج بیانگر دقت بیشتر SVM نسبت به شبکه عصبی RBF در عیب یابی سازه ها، حتی در صورت وجود نویز در داده ها، می باشد
کلیدواژه ها:
نویسندگان
رامین قیاسی
دانشجوی کارشناسی ارشد سازه، دانشگاه شهید باهنر کرمان، ایران
پیمان ترک زاده
استادیار بخش مهندسی عمران، دانشگاه شهید باهنر کرمان، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :