Enhanced Earthquake Location using Deep Learning
محل انتشار: بیست و یکمین کنفرانس ژئوفیزیک ایران
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 215
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
GCI21_200
تاریخ نمایه سازی: 1 بهمن 1403
چکیده مقاله:
Due to the complexity of the earthquake occurrence process and the lack of specific patterns, accurate prediction earquake location presents several challenges. However, recent studies have shown that neural networks can play a key role in earthquake data analysis, particularly in determining the exact locations of earthquakes. In this research, aimed at improving earthquake localization, earthquake data were collected from the Iranian Seismological Center, and the waveform of each earthquake was converted into images. Subsequently, these images were labeled with spatial information (latitude, longitude, and depth), and the location of each earthquake was modeled in three dimensions using a Gaussian function. Finally, a labeled earthquake dataset was created that will be used to train neural networks.
کلیدواژه ها:
نویسندگان
Parwiz Khursand
Department of Geophysics, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
Reza Mansouri
Department of Geophysics, Faculty of Nano and Bio Science and Technology, PersianGulf University, Bushehr, Iran
Mohammad Shokri-Kaveh
Departmet of Seismology,International Institute of Earthquake Engineering andSeismology(IIEES), Tehran, Iran
Saeed Soltani-moghadam
۴Departmet of Seismology,International Institute of Earthquake Engineering and Seismology(IIEES), Tehran, Iran