Optimization of Deposition Rate in Gas Metal Arc Welding Process using Genetic Algorithm
محل انتشار: دوازدهمین کنفرانس ملی مهندسی ساخت و تولید ایران
سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,089
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICME12_390
تاریخ نمایه سازی: 25 شهریور 1392
چکیده مقاله:
Gas metal arc welding is a high quality arc welding process used in industry. In this process an electric arc is established between a continuous filler metal and the weld pool being protecting by a shielding gas. Selecting appropriate values for input variables in this welding process is essential in order to control the quality of weldments. In this paper, the deposition rate in gas metal arc welding of ST-37 steel has been optimized by genetic algorithm. In this connection, a five level five factor rotatable central composite design was used to collect the welding data (with -2, -1, 0, +1,+2 levels) and the deposition rate was modeled as a function of wire feed rate, welding voltage, nozzle-to-plate distance, welding speed and gas flow rate by regression analysis. Then the deposition rate as the fitness function was minimized by genetic algorithm. The result shows that in order to obtain the lower deposition rate, wire feed rate ,welding voltage, welding speed ,nozzle-to- plate distance and gas flow rate must be at -2, - 0.824, +2, 0.85 and -2 levels, respectively.
کلیدواژه ها:
نویسندگان
M. Aghakhani
Mechanical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
M. Mahdipour Jalilian
Mechanical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
A. Karami
Mechanical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
M.M. Jalilian
Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :