A Machine-Learning-based Predictive Smart Healthcare System

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 98

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-1_014

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

kground and Objectives: In smart grid paradigm, there exist many versatile applications to be fostered such as smart home, smart buildings, smart hospitals, and so on. Smart hospitals, wherein patients are the possible consumers, are one of the recent interests within this paradigm. The Internet of Things (IoT) technology has provided a unique platform for healthcare system realization through which the patients’ health-based data is provided and analyzed to launch a continuous patient monitoring and; hence, greatly improving healthcare systems. Methods: Predictive machine learning techniques are fostered to classify health conditions of individuals. The patients’ data is provided from IoT devices and electrocardiogram (ECG) data. Then, efficient data pre-processings are conducted, including data cleaning, feature engineering, ECG signal processing, and class balancing. Artificial intelligence (AI) is deployed to provide a system to learn and automate processes. Five machine learning algorithms, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), logistic regression, Naive Bayes, and random forest, as the AI engines, are considered to classify health status based on biometric and ECG data. Then, the output would be the most proper signals propagated to doctors’ and nurses’ receivers in regard of the patients providing them by initial pre-judgments for final decisions.Results: Through the conducted analysis, it is shown that logistic regression outperforms the other AI machine learning algorithms with an F۱ score, recall, precision, and accuracy of ۰.۹۱, followed by XGBoost with ۰.۸۸ across all metrics. SVM and Naive Bayes both achieved ۰.۸۵ accuracy, while random forest attained ۰.۸۶. Moreover, the Receiver Operating Characteristic Area Under Curve (ROC-AUC) scores confirm the robustness of Logistic Regression and XGBoost as apt candidates in learning the developed healthcare system.Conclusion: The conducted study concludes a promising potential of AI-based machine learning algorithms in devising predictive healthcare systems capable of initial diagnosis and preliminary decision makings to be relied upon by the clinician. What is more, the availability of biometric data and the features of the proposed system significantly contributed to primary care assessments.

نویسندگان

F. Shaban

Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.

S. Golshannavaz

Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G. Halfacree, The official Raspberry Pi Beginner's Guide: How to ...
  • R. A. Mouha, "Internet of things (IoT)," J. Data Anal. ...
  • S. Maqsood, et al., "A survey: From shallow to deep ...
  • V. Kaul, S. Enslin, S. A. Gross, "History of artificial ...
  • F. J. Abdullayeva, "Internet of things‐based healthcare system on patient ...
  • K. M. Hosny, et al., "Internet of things applications using ...
  • A. Golparvar, O. Ozturk, M. K. Yapici, "Gel-free wearable electroencephalography ...
  • P. Srinivas, et al., "Support vector machines based predictive seizure ...
  • M. Alhayani, N. Alallaq, M. Al-Khiza’ay, "Optimize one max problem ...
  • S. A. Alzakari, et al., "Enhanced heart disease prediction in ...
  • S. Pokhrel, R. Chhetri, "A literature review on impact of ...
  • Y. Izza, A. Ignatiev, J. Marques-Silva, "On explaining decision trees," ...
  • M. Alhayani, M. Al-Khiza’ay, "Analyze symmetric and asymmetric encryption techniques ...
  • S. Amini, et al., "Urban land use and land cover ...
  • V. Jackins, et al., "AI-based smart prediction of clinical disease ...
  • L. Dai, et al., "Influence of soil properties, topography, and ...
  • W. Python, Python releases for windows, ۲۰۲۱ ...
  • S. R. Chanthati, "Second version on a centralized approach to ...
  • D. A. Pisner, D. M. Schnyer, Support vector machine, Machine ...
  • T. Latchoumi, et al. "Enhancement in manufacturing systems using Grey-Fuzzy ...
  • Q. Li, et al., "A comparative study on the most ...
  • Y. Qiu, et al., "Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost ...
  • P. Schober, T. R. Vetter, "Logistic regression in medical research," ...
  • N. Boyko, K. Boksho, Application of the Naive Bayesian Classifier ...
  • E. M. K. Reddy, Introduction to Naive Bayes and a ...
  • D. Tramontin, Random forest implementation for classification analysis: default predictions ...
  • A. E. Ulloa-Cerna, et al., "rECHOmmend: an ECG-based machine learning ...
  • M. Shao, et al., "A review of multi-criteria decision making ...
  • G. Xu, "IoT-assisted ECG monitoring framework with secure data transmission ...
  • I. Wickramasinghe, H. Kalutarage, "Naive Bayes: applications, variations and vulnerabilities: ...
  • J. Muschelli, "ROC and AUC with a binary predictor: a ...
  • نمایش کامل مراجع