A Machine-Learning-based Predictive Smart Healthcare System
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 98
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-13-1_014
تاریخ نمایه سازی: 11 آذر 1403
چکیده مقاله:
kground and Objectives: In smart grid paradigm, there exist many versatile applications to be fostered such as smart home, smart buildings, smart hospitals, and so on. Smart hospitals, wherein patients are the possible consumers, are one of the recent interests within this paradigm. The Internet of Things (IoT) technology has provided a unique platform for healthcare system realization through which the patients’ health-based data is provided and analyzed to launch a continuous patient monitoring and; hence, greatly improving healthcare systems. Methods: Predictive machine learning techniques are fostered to classify health conditions of individuals. The patients’ data is provided from IoT devices and electrocardiogram (ECG) data. Then, efficient data pre-processings are conducted, including data cleaning, feature engineering, ECG signal processing, and class balancing. Artificial intelligence (AI) is deployed to provide a system to learn and automate processes. Five machine learning algorithms, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), logistic regression, Naive Bayes, and random forest, as the AI engines, are considered to classify health status based on biometric and ECG data. Then, the output would be the most proper signals propagated to doctors’ and nurses’ receivers in regard of the patients providing them by initial pre-judgments for final decisions.Results: Through the conducted analysis, it is shown that logistic regression outperforms the other AI machine learning algorithms with an F۱ score, recall, precision, and accuracy of ۰.۹۱, followed by XGBoost with ۰.۸۸ across all metrics. SVM and Naive Bayes both achieved ۰.۸۵ accuracy, while random forest attained ۰.۸۶. Moreover, the Receiver Operating Characteristic Area Under Curve (ROC-AUC) scores confirm the robustness of Logistic Regression and XGBoost as apt candidates in learning the developed healthcare system.Conclusion: The conducted study concludes a promising potential of AI-based machine learning algorithms in devising predictive healthcare systems capable of initial diagnosis and preliminary decision makings to be relied upon by the clinician. What is more, the availability of biometric data and the features of the proposed system significantly contributed to primary care assessments.
کلیدواژه ها:
نویسندگان
F. Shaban
Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
S. Golshannavaz
Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :