DKNN and HPFS: An Efficacious Deep Learning Approach with Fuzzy Sets for Social Network Hostility
محل انتشار: مجله سیستم های فازی، دوره: 21، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-21-4_009
تاریخ نمایه سازی: 11 آذر 1403
چکیده مقاله:
Hate speech and hateful language have become more accessible to spread as a result of the increase in social media and digital contacts. Cyberbullying is the term used to describe these kinds of online insults, attacks, and harassment. Regretfully, the prevalence of cyberbullying has increased, with those who engage in it hiding behind an illusion of relative online anonymity. Finding such offensive content has become difficult due to the overwhelming amount of user-generated content. Text categorization is a broad field of machine learning. Because deep learning techniques outperform typical machine learning algorithms in various ways, researchers are turning to them to detect cyberbullying. This research proposes a new deep learning (DL)--based technique to overcome the issues of cyberbullying content recognition. To detect and classify the bullying content from pre-processed data using selected essential features, the Deep Kronecker Neural Network (DKNN) technique was employed. Comparing different classification strategies with the proposed approach, the extensive tests conducted on the two datasets demonstrate the significance of this work. We provide a novel technique for cyberbullying detection: the DKNN technique outperforms existing state-of-the-art methods with up to ۹۹.۵۶% accuracy results.
کلیدواژه ها:
Cyberbullying ، Deep learning ، detection ، algorithms ، Twitter ، cybercrime ، social media ، sentiment analysis ، cyberbullying natural language processing
نویسندگان
T. Charan Singh
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Deemed to be University, Vaddeswaram, Andhra Pradesh, ۵۲۲۳۰۲, India.
S. Srithar
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Deemed to be University, Vaddeswaram, Andhra Pradesh, ۵۲۲۳۰۲, India.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :