Exploring the Impact of Artificial Intelligence on Advancing Neurorehabilitation Techniques: A Comprehensive Survey in Biomedical Engineering
محل انتشار: سومین کنفرانس بین المللی هوش مصنوعی و چشم انداز آینده آن در علوم مهندسی برق ، کامپیوتر ، مکانیک و مخابرات
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 111
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCPM03_001
تاریخ نمایه سازی: 28 آبان 1403
چکیده مقاله:
In recent decades, neurorehabilitation, a key area in biomedical engineering, has increasingly focused on helping people with movement disorders recover lost functions. However, the capabilities of artificial intelligence (AI) have paved the way for new advances in enhancing these treatments. This paper reviews the current status of artificial intelligence-based neurorehabilitation techniques, emphasizing the roles of machine learning (ML), deep learning (DL), Functional Electrical Stimulation (FES) methods, assistive robots, and biofeedback systems. Additionally, artificial intelligence techniques, including electromyography (EMG) and electroencephalography (EEG) data processing, human motion monitoring, and adaptive robotic support, have shown considerable promise in optimizing and personalizing therapeutic interventions. Despite these advances, important challenges remain, such as ensuring data integrity, improving the generalizability of AI models, addressing ethical issues, and effectively integrating AI technologies into clinical practice. Overcoming these barriers is critical to implementing AI innovations in clinical settings. This study also explores potential research avenues aimed at addressing these challenges and further increasing the impact of AI in neurorehabilitation.
کلیدواژه ها:
نویسندگان
Seyyed Ali Zendehbad
Department of Biomedical Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran
Hamidreza Kobravi
Department of Biomedical Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran
Shahryar Salmani Bajestani
Department of Biomedical Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran