A Framework for Promoting Passive Breast Cancer Monitoring: Deep Learning as an Interpretation Tool for Breast Thermograms

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-21-4_005

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

Introduction: Several types of cancer can be detected early through thermography, which uses thermal profiles to image tissues in recent years, thermography has gained increasing attention due to its non-invasive and radiation-free nature. There is a growing need for thermographic images of breast cancer lesions in different nationalities and ages to develop this technique, however. This study aims to introduce a dataset of breast thermograms.Material and Methods: In this study, thermographic images of breast cancer from Iranian samples were prepared and confirmed due to the limited number of breast thermogram databases.  The prepared database was tested using artificial intelligence and another well-known DMR database (Database for Mastology Research) in this study to determine its reliability.Results: A variety of deep learning architectures and transfer learning are used to evaluate these databases for accuracy, sensitivity, speed, training compliance, and validation compliance. According to best-fitted structures for both types of databases, the database obtained from this study has a quality comparable to the DMR reference database, with minimum accuracy, sensitivity, specificity, precision, and F-score of ۸۰%, ۸۶%, ۸۶%, ۸۸%, and ۸۷%, respectively.Conclusion: Using thermography as a method of early breast screening is demonstrated to be effective. In comparison to DMR, the lower statistics of the proposed database (between ۲ and ۷ percent) indicates that more diverse breast thermograms should be captured in conjunction with improvements to imaging equipment as well as adherence to thermography recording protocols in order to improve the reliability and efficiency of the database.

نویسندگان

Mohamad Firouzmand

Department of Biomedical Engineering, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

Keivan Majidzadeh

Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

Maryam Jafari

Breast Diseases Department, Motamed Cancer Institute, South Gandhi St., Tehran, IR Iran.

Shahpar Haghighat

Iranian Centre for Breast Cancer (ICBC), ACECR, Tehran, Iran

Rezvan Esmaeili

Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, South Gandhi, Vanak Square, Tehran ۱۵۱۷۹۶۴۳۱۱, Iran.

Leila Moradi

Department of Biomedical Engineering, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

Nima Misaghi

Department of Computer Engineering, Faculty of Engineering, Islamic Azad University E-Campus, Tehran, Iran

Mahsa Ensafi

Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

Fatemeh Batmanghelich

Department of Computer Engineering, Faculty of Engineering, Islamic Azad University E-Campus, Tehran, Iran

Mohammadreza Keyvanpour

Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

Seyed Vahab Shojaedini

Electrical Engineering Department, Iranian Research Organization for Science and Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Fouladi N, Pourfarzi F, Amani F, Ali-Mohammadi H, Lotfi I, ...
  • Díaz-Cortés MA, Ortega-Sánchez N, Hinojosa S, Oliva D, Cuevas E, ...
  • Roslidar R, Rahman A, Muharar R, Syahputra M.R, Arnia F, ...
  • Baffa MD, Lattari LG. Convolutional Neural Networks for Static and ...
  • Ekici S, Jawzal H. Breast cancer diagnosis using thermography and ...
  • Zuluaga-Gomez J, Zerhouni N, Al Masry Z, Devall C, Varnier ...
  • Mambou S. J, Maresova P, Krejcar O, Selamat A, Kuca ...
  • Ensafi, M., Keyvanpour, M.R. & Shojaedini, S.V: ABT: a comparative ...
  • Stančić I, Kuzmanić Skelin A, Musić J, Cecić M. The ...
  • Kandlikar SG, Perez-Raya I, Raghupathi PA, Gonzalez-Hernandez J-L, Dabydeen D, ...
  • Wang SH, Muhammad K, Phillips P, Dong Z, Zhang YD. ...
  • Mashekova A, Zhao Y, Ng EYK, Zarikas V, Fok SC, ...
  • Resmini R, Silva LF, Medeiros PR, Araujo AS, Muchaluat-Saade DC, ...
  • Amri A, Pulko SH, Wilkinson AJ. Potentialities of steady-state and ...
  • Tang X, Ding H, Yuan Y, Wang V. Morphological measurement ...
  • Kapoor, P., Prasad, S. V. A. V., & Patni, S. ...
  • Schaefer G, Závišek M, Nakashima T. Thermography based breast cancer ...
  • Nicandro CR, Efrén MM, Maria Yaneli AA, Enrique MD, Hector ...
  • Lessa V, Marengoni M. Applying Artificial Neural Network for the ...
  • Jiménez-Gaona Y, Rodríguez-Álvarez MJ, Lakshminarayanan V. Deep-Learning Based Computer-Aided Systems ...
  • Wang J, Zhu H, Wang SH, and Zhang YD. A ...
  • Mishra S, Prakash A, Roy SK, Sharan P, Mathur N. ...
  • Allugunti V.R. Breast cancer detection based on thermographic images using ...
  • MohamedI EA, Rashed EA, GaberI T, Karam O. Deep learning ...
  • Sánchez-Cauce R, Pérez-Martín J, Luque M. Multi-input convolutional neural network ...
  • Muchamad MK, Arnia F, Syukri M, Munadi K. A Conceptual ...
  • Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni ...
  • Dey S, Roychoudhury R, Malakar S, Sarkar R. Screening of ...
  • Gonçalves CB, Souza JR, Fernandes H. Fernandes. Classification of static ...
  • Roslidar R, Saddami K, Arnia F, Syukri M, Munadi KA ...
  • Tsietso D, Yahya A, and Samikannu R. A Review on ...
  • [online]: Available from: http://visual.ic.uf.br/ ...
  • Silva LF, Saade DC, Sequeiros GO, Silva AC, Paiva AC, ...
  • Houssein E, et al. Deep and machine learning techniques for ...
  • Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional ...
  • Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image ...
  • Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, ...
  • Ensafi M, Keyvanpouy MR, Shojaedini SV. A New method for ...
  • Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H. ...
  • Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, ...
  • Eldin SN, Hamdy JK, Adnan GT, Hossam M, Elmasry N, ...
  • Farooq M.A, and Corcoran P. Infrared Imaging for Human Thermography ...
  • Torres-Galván, JC, Guevara E, Kolosovas-Machuca ES, Oceguera-Villanueva A, Flores JL, ...
  • Kiymet S, Aslankaya MY, Taskiran M, and Bolat B. Breast ...
  • نمایش کامل مراجع