Analysis and Prediction PCOS Using Classification Algorithms
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 96
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS12_094
تاریخ نمایه سازی: 12 آبان 1403
چکیده مقاله:
Five to Ten percent of women of reproductive age suffer with pcos, the most prevalentendocrine gland illness. Predicting the occurrence of polycystic ovarian syndrome (PCOS) is thereforea helpful method to raise women's awareness of reproductive health.In this study, machine learning and neural network algorithms are used to predict the PCOS. The siximportant classification models are applied to forecast PCOS model in women. Models werecompared and evaluated using statistical measures such as Accuracy, Balanced Accuracy, AUC-ROCCurve, and F۱ Score. Based on these evaluations, the best model was selected. AdaBoostClassifier isthought to be the best model for forecasting PCOS. The findings show that the F۱ Score, BalancedAccuracy, and AUC-ROC Curve values are ۰.۷۴, ۰.۷۴, and ۰.۶۵, respectively, and that theAdaBoostClassifier's accuracy is close to ۸۰%.
کلیدواژه ها:
نویسندگان
A Azizi
Department of Mathematics and Computer Science, Damghan University, Damghan, Iran
K Mostafapour
Department of Biology, University of Guilan, Guilan, Iran