Integration of Multi-Source Data for Better Reservoir Characterization
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 118
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SETT06_049
تاریخ نمایه سازی: 25 مهر 1403
چکیده مقاله:
Reservoir characterization is a critical aspect of oil and gas exploration, directly influencing the decision-making process in drilling and production. Traditional methods rely heavily on seismic data, but the integration of multi-source data, facilitated by advancements in artificial intelligence (AI) and machine learning (ML), has been shown to enhance the accuracy and reliability of reservoir models significantly. This article explores integrating seismic data with well logs, electromagnetic surveys, and other geophysical methods to improve reservoir characterization. A case study from the North Sea oil field demonstrates the practical application of these techniques, highlighting the improvements in subsurface imaging and reservoir understanding. The article concludes with a discussing of the future directions and potential of multi-source data integration in the oil and gas industry.
کلیدواژه ها:
نویسندگان
Arash Ghiasvand
Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran.