A Neural Network-based Approach to Prediction of Preterm Birth using Non-invasive Tests

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 113

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-14-5_008

تاریخ نمایه سازی: 16 مهر 1403

چکیده مقاله:

Background: One of the main reasons for neonatal deaths is preterm delivery, and infants who have survived preterm birth (PB) are at risk of significant health complications. However, an effective method for reliable and accurate prediction of preterm labor has yet to be proposed. Objective: This study proposes an artificial neural network (ANN)-based approach for early prediction of PB, and consequently can hint physicians to start the treatment earlier, reducing the chance of morbidity and mortality in the infant. Material and Methods: This historical cohort study proposes a feed-forward ANN with ۷ hidden neurons to predict PB. Thirteen risk factors of PB were collected from ۳۰۰ pregnant women (۱۵۰ with preterm delivery and ۱۵۰ normal) as the ANN inputs from ۲۰۱۸ to ۲۰۱۹. From each group, ۷۰%, ۱۵%, and ۱۵% of the subjects were randomly selected for training, validation, and testing of the model, respectively. Results: The ANN achieved an accuracy of ۷۹.۰۳% for the classification of the subjects into two classes normal and PB. Moreover, a sensitivity of ۷۳.۴۵% and specificity of ۸۴.۶۲% were obtained. The advantage of this approach is that the risk factors used for prediction did not require any lab test and were collected in a questionnaire.  Conclusion: The efficacy of the proposed approach for the early identification of pregnant women, who are at high risk of preterm delivery, leads to necessary care and clinical interventions, applied during the pregnancy.

نویسندگان

Masoumeh Mirzamoradi

Department of Perinatology, Mahdieh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Hamid Mokhtari Torshizi

Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Masoumeh Abaspour

Department of Perinatology, Mahdieh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Atefeh Ebrahimi

Department of Perinatology, Mahdieh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Ali Ameri

Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Sendeku FW, Beyene FY, Tesfu AA, Bante SA, Azeze GG. ...
  • Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, ...
  • Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and ...
  • Petrou S. The economic consequences of preterm birth during the ...
  • Liu L, Oza S, Hogan D, Chu Y, Perin J, ...
  • Nikolova T, Bayev O, Nikolova N, Di Renzo GC. Comparison ...
  • Jung EY, Park JW, Ryu A, Lee SY, Cho SH, ...
  • García-Blanco A, Diago V, Serrano De La Cruz V, Hervás ...
  • Euliano TY, Nguyen MT, Darmanjian S, McGorray SP, Euliano N, ...
  • Frey HA, Klebanoff MA. The epidemiology, etiology, and costs of ...
  • Rundell K, Panchal B. Preterm Labor: Prevention and Management. Am ...
  • Choi SJ. Use of progesterone supplement therapy for prevention of ...
  • Catley C, Frize M, Walker CR, Petriu DC. Predicting high-risk ...
  • Mas-Cabo J, Prats-Boluda G, Garcia-Casado J, Alberola-Rubio J, Perales A, ...
  • Włodarczyk T, Płotka S, Rokita P, Sochacki-Wójcicka N, Wójcicki J, ...
  • Yang L, Wang P, Jiang Y, Chen J. Studying the ...
  • Lilliecreutz C, Larén J, Sydsjö G, Josefsson A. Effect of ...
  • Elaveyini U, Devi SP, Rao KS. Neural networks prediction of ...
  • Lee KS, Ahn KH. Artificial Neural Network Analysis of Spontaneous ...
  • Huang L, Hou Q, Huang Y, Ye J, Huang S, ...
  • Bachkangi P, Taylor AH, Bari M, Maccarrone M, Konje JC. ...
  • Carlisle N, Chandiramani M, Carter J, Shennan AH. Reply: Evaluation ...
  • Radan AP, Aleksandra Polowy J, Heverhagen A, Simillion C, Baumann ...
  • Ijabi J, Moradi-Sardareh H, Afrisham R, Seifi F, Ijabi R. ...
  • نمایش کامل مراجع