Investigating the Impact of Environmental Factors on Electricity Consumption Using Spatial Data Mining and Artificial Neural Network: A Case Study in Yazd City

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JEHSD-9-3_006

تاریخ نمایه سازی: 15 مهر 1403

چکیده مقاله:

Introduction: Modeling energy demand in different energy consuming sectors is a crucial measure for effective management of the energy sector and appropriate policies to increase productivity. The rising importance of energy resources in economic development is evident. Sustainable energy use is crucial for environmental protection and social progress. Understanding the factors affecting energy consumption is essential for effective energy management. Therefore, the purpose of the current study is to investigate the impact of environmental factors on household electricity consumption in Yazd city. Materials and Methods: In the present research, various environmental factors affecting electricity consumption, including air pollution, air temperature in homes, ground surface temperature, and green space were investigated. The effects of these factors on electricity consumption of subscribers were investigated with ANN and  apriori methods. Results: Among the environmental factors, the distance to the regional park, the area of the park, and the amount of vegetation at a distance of ۳۰۰m have the greatest impact, respectively, and the average summer air temperature, the amount of vegetation at a radius of ۵۰۰ m, the distance from the local park, and the average summer NDVI have had the smallest effect. Unlike neural network methods, apriori presents relationships between parameters affecting electricity consumption transparently in the form of rules. Conclusion: It's used to identify the most frequently occurring elements and meaningful associations in a dataset. Greenspace can be a mitigation strateegy for reduction of energy consumption.

نویسندگان

Alireza Sarsangi

Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran.

Ara Toomanian

Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran

Najmeh Neysani Samany

Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran

Majid Kiavarz

Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran

Mohammad Hossein Saraei

Department of Geography, Yazd University, Yazd, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Yoo S-H. The causal relationship between electricity consumption and economic ...
  • Lean HH, Smyth R. CO۲ emissions, electricity consumption and output ...
  • Rahimi Ga, khadem f, Shahiki Tash MN. Estimation of energy ...
  • Soleimani P, Yaghobi Z. Forecasting of Iran power demand network ...
  • Omidi M, Omidi N, Asgari H, et al. Modeling and ...
  • Fatahi S, Baharipour S, Rezaee E. Evaluation of the effects ...
  • Tejero-González A, Andrés-Chicote M, García-Ibáñez P, et al. Assessing the ...
  • Erfani EE, A. Baaghideh, M. Babaeiyan, M. Future perspective of ...
  • Salmani A, Mojarrad F. Analysis of relationship between climatic variables ...
  • Salmanzadeh-Meydani N, Ghomi SF. The causal relationship among electricity consumption, ...
  • Wu X, Benjamin Zhan F, Zhang K, et al. Application ...
  • Bessec M, Fouquau J. The non-linear link between electricity consumption ...
  • Vine E. Adaptation of California’s electricity sector to climate change. ...
  • Zheng Z, Chen H, Luo X. Spatial granularity analysis on ...
  • Ramos S, Soares J, Cembranel SS, et al. Data mining ...
  • Brounen D, Kok N, Quigley JM. Energy literacy, awareness, and ...
  • Kovalskyy V, Roy DP. The global availability of Landsat ۵ ...
  • Wulder MA, White JC, Loveland TR, et al. The global ...
  • Roy DP, Wulder MA, Loveland TR, et al. Landsat-۸: science ...
  • Agrawal R, Imieliński T, Swami A, editors. Mining association rules ...
  • Agarwal S, editor. Data mining: data mining concepts and techniques. ...
  • Akhondzadeh-Noughabi L, Albadvi A, Aghdasi M. Mining customer dynamics in ...
  • Kim YS, Yum B-J. Recommender system based on click stream ...
  • Liu B. Web data mining: exploring hyperlinks, contents, and usage ...
  • Tan PS, M. Kumar, V. Introduction to data mining. New ...
  • Hunter H, Cervone G. Analysing the influence of African dust ...
  • Yi F, Ye H, Wu X, et al. Self-aggravation effect ...
  • You S, Neoh KG, Tong YW, et al. Variation of ...
  • Gargiulo C, Ayad A, Tulisi A, et al. Effect of ...
  • نمایش کامل مراجع