Identifying alterations of Zafarghand porphyry copper system (Isfahan): employing singularity method and false color composite
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 68
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-58-3_011
تاریخ نمایه سازی: 14 مهر 1403
چکیده مقاله:
In recent times, geological remote sensing has greatly enhanced the ability to access alteration zones and identify potential sites for hydrothermal deposits quickly and cost-effectively. This study will utilize satellite image processing methods to map the alteration zones in exploration area of the Zafarghand. The study area is located in the NE of Isfahan and falls within the central structural zone of Iran. The Zafarghand porphyry system exhibits phyllic, potassic, propylitic, argillic alteration halos. Alterations in this study were detected using ASTER sensor imagery. Each pixel's digital number value from the satellite images, organized in a matrix, serves as a sample in a systematic grid. The singularity method algorithm was then applied as an effective structural tool to identify geochemical anomalies in the digital pixel values from ASTER images. The findings demonstrate that the singularity method, due to its structural attributes, has been successful in decision-making and highly effective to determine promising areas in the study area, especially for propylitic and phyllic alterations.
کلیدواژه ها:
نویسندگان
Seyyed saeed Ghannadpour
Department of Mining Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Morteza Hasiri
Department of Mining Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Hadi Jalili
Iranian Space Research Center, Tehran, Iran.
Hamid Salehi Shahrabi
Iranian Space Research Center, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :