Modeling of biodiesel production from palm oil and methanol via zeolite derived catalyst as a phase boundary catalyst: An optimization study by using artificial intelligence
محل انتشار: نهمین کنفرانس زئولیت انجمن شیمی ایران
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 27
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NZEOLITE09_138
تاریخ نمایه سازی: 9 مهر 1403
چکیده مقاله:
In this article, generalized regression artificial neural networks have been used to modeling the production of biodiesel fuel from palm oil or soybean oil. A zeolite derived catalyst was prepared by lithium modified zeolites, which can be used as a phase boundary catalyst for the reaction of soybean oil or palm oil with short chain alcohols such as methanol or ethanol. Three variables: Reaction time, Methanol:oil and Catalyst amount are considered as independent variables and yield as dependent variable. Based on the experiments, the behavior of the system has been modeled. To maximize production efficiency, collective intelligence like particle swarm optimization algorithm has been used. The obtained results are highly accurate compared to other modeling. It is clear that the optimal value of the more accurate model is more reliable than the optimal value of the low accuracy model.
کلیدواژه ها:
particle swarm optimization algorithm ، generalized regression artificial neural networks ، mathematical modelling ، biodiesel fuel.
نویسندگان
Gholam Reza Zaki
Department of Applied Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz,Iran
Ali asghar Jodayree Akbarfam
Department of Applied Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz,Iran.