A New GA Based Method for Improving Hybrid Clustering

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,109

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE21_626

تاریخ نمایه سازی: 27 مرداد 1392

چکیده مقاله:

In this paper a new hybrid clustering method is presented which uses fuzzy logic and genetic algorithm. There are two main phases that should beinvestigated. The first is coding hybrid clustering problem in a way that could be solved by genetic algorithm. The other is designing an evaluation functionwhich conducts the potential results to the global optimum. In this paper, a novel fuzzy criterion for evaluating the final partition is proposed which usesstring representation of ensemble of primary clusters. The objective function tries to maximize the agreement between the ensemble members as well as minimize thedisagreement simultaneously. The efficiency of the proposed method is evaluated by multiple standarddatabases. The promising obtained results show theoutperforming of the proposed method compared to the other well known clustering method

نویسندگان

N Razizadeh

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

M. S.G. Ghasempour

Industrial Engineering Department, Amirkabir University of Technology, Tehran, Iran