Increasing the speed of diagnosis of glaucoma by using multitask deep neural network from retinal images

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 94

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-16-4_022

تاریخ نمایه سازی: 24 شهریور 1403

چکیده مقاله:

Glaucoma stands out as a prevalent ocular ailment in the elderly population, causing substantial harm to the optic nerves and eventual vision impairment. Fundus photography plays a pivotal role in the clinical assessment of glaucoma, facilitating the exploration of associated morphological alterations. Computational algorithms, capable of processing fundus images, have emerged as indispensable tools in this diagnostic domain. Hence, the imperative development of an automated diagnostic system leveraging image processing techniques is underscored. In this study, a novel approach to the segmentation and classification of retinal optic nerve head images is introduced. This method concurrently executes both tasks through a deep learning framework, thereby enhancing the learning speed within the network. The proposed network encompasses approximately ۲۹ million parameters and demonstrates an efficiency of ۲.۵ seconds for segmenting and classifying retinal images. Central to this strategy is a multi-task deep learning network, harmonizing segmentation and classification processes, and leveraging information from both tasks to optimize learning efficacy. Validation of the proposed method is conducted using the publicly available ORIGA dataset. The attained performance metrics for accuracy, sensitivity, specificity, and F۱-score are ۹۹.۴۶۱, ۹۳.۴۶, ۱۰۰, and ۹۸.۷۰۰۶, respectively. These results collectively affirm the substantial advancement achieved by the proposed method in comparison to existing methodologies.

نویسندگان

Manizheh Safarkhani Gargari

Department of Computer Science, Urmia Branch, Islamic Azad University, Urmia, Iran

MirHojjat Seyedi

Department of Biomedical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

Mehdi Alilou

Department of Computer Science, Khoy Branch, Islamic Azad University, Khoy, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Abd Elaziz, E.O. Abo Zaid, M.A.A. Al-qaness, and R.A. ...
  • L. Abdel-Hamid, Retinal image quality assessment using transfer learning: Spatial ...
  • N. Akter, J. Fletcher, S. Perry, M.P. Simunovic, N. Briggs, ...
  • S. Chatterjee, A. Suman, R. Gaurav, S. Banerjee, A.K. Singh, ...
  • P.K. Chaudhary and R.B. Pachori, Automatic diagnosis of glaucoma using ...
  • S. Chen, Z. Wang, J. Shi, B. Liu, and N. ...
  • F. Chollet, Xception: Deep learning with depthwise separable convolutions, in ...
  • S.A. David, C. Mahesh, V.D. Kumar, K. Polat, A. Alhudhaif, ...
  • M. Deshpande, Introduction to Convolutional Neural Networks for Vision Tasks, ...
  • A. Diaz-Pinto, S. Morales, V. Naranjo, T. Kohler, J. M. ...
  • Sh. Du, Understanding Dice Loss for Crisp Boundary Detection, AI ...
  • M.S. Gargari, M.H. Seyedi, and M. Alilou, Segmentation of retinal ...
  • S. Goel, S. Gupta, A. Panwar, S. Kumar, M. Verma, ...
  • I. K. Gupta, A. Choubey, and S. Choubey, Mayfly optimization ...
  • K. He, Z. Xiangyu, R. Shaoqing, and S. Jian, Deep ...
  • G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. ...
  • J. Kaur and P. Kaur, Automated computer-aided diagnosis of diabetic ...
  • T. Khalil, M.U. Akram, H. Raja, A. Jameel and I. ...
  • Z. Kong, M. He, Q. Luo, X. Huang, P. Wei, ...
  • T. L. T. Le, N. Thome, S. Bernard, V. Bismuth ...
  • S. Maheshwari, V. Kanhangad and R. B. Pachori, CNN-Based Approach ...
  • R. Marques, D.A. De Jesus, J. Barbosa-Breda, J. Van Eijgen, ...
  • F. Milletari, N. Navab, and S. A. Ahmadi, V-Net: Fully ...
  • B. Oliveira, H.R. Torres, P. Morais, F. Veloso, A.L. Baptista, ...
  • S. Pathan, P. Kumar, R.M. Pai, and S.V. Bhandary, Automated ...
  • A. Ramzan, M. Usman Akram, A. Shaukat, S. Gul Khawaja, ...
  • A. Rosebrock, Convolutional neural networks (CNNs) and layer types, [Online], ...
  • O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks ...
  • T. Saba, S. Akbar, H. Kolivand, and S. Ali Bahaj, ...
  • J. Sahlsten, J. Jaskari, J. Kivinen, L. Turunen, E. Jaanio, ...
  • A. Sarhan, J. Rokne, and R. Alhajj, Glaucoma detection using ...
  • P. Sharma, VGG Network, Codingninjas, Apr. ۲۱, ۲۰۲۳, https://www.codingninjas.com/codestudio/library/vggnet ...
  • D. Shen, T. Liu, T.M. Peters, L.H. Staib, C. Essert, ...
  • A. Shoukat, S. Akbar, S.A. Hassan, S. Iqbal, A. Mehmood, ...
  • K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for ...
  • M.B. Sudhan, M. Sinthuja, S. Pravinth Raja, J. Amutharaj, G. ...
  • C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, Going ...
  • R. Thanki, A deep neural network and machine learning approach ...
  • B. Xu, N. Wang, T. Chen, and M. Li, Empirical ...
  • M.Y.T. Yip, G. Lim, Z.W. Lim, Q.D. Nguyen, C.C.Y. Chong, ...
  • and J. Ho, Technical and imaging factors influencing performance of ...
  • K. Zervoudakis and S. Tsafarakis, A mayfly optimization algorithm, Comput. ...
  • Zh. Zhang, F. Sh. Yin, J. Liu, W.K. Wong, N.M. ...
  • نمایش کامل مراجع