Evaluation of Different Methods of Machine Vision in Health Monitoring and Damage Detection of Structures

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 55

فایل این مقاله در 40 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CIVLJ-9-4_006

تاریخ نمایه سازی: 23 شهریور 1403

چکیده مقاله:

The application of Digital Image Processing (DIP) and computer vision is increasing in civil engineering branches nowadays. By implementing DIP methods, analyzation, and detection of intended objects and elements on the images will be done. So, these methods can be used for automatic inspection and decreasing manpower's direct controls on structures and infrastructures. This paper will study the application of DIP such as health monitoring and damage detection in structures. After reviewing various researches in this field, a classification including five classes was done. These classes including ۱-identification and evaluation of the crack, ۲-identification and evaluation of defects in steel structures, ۳-identification and evaluation of other imperfections and defects, ۴-deflection, deformation, and vibration assessment, and ۵-identification of texture, dimensions, elements, and components. The researches also are classified based on various aspects such as the implemented methods, specification of images, the performance of the method, and so on. Finally, after investigating the shortage of researches, the future suggestion for researchers was made.

نویسندگان

Seyyed Hamed Farhang

PhD., Faculty of Civil Engineering, Semnan University, Semnan, Iran

Omid Rezaifar

Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

Mohammad Kazem Sharbatdar

Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

Alireza Ahmady Fard

Associate Professor, Faculty of Electronic Engineering and Robotic, Shahrood University of Technology, Shahrood, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Shahrokhinasab E, Hosseinzadeh N, Monirabbasi A, Torkaman S. Performance of ...
  • Koch C, Georgieva K, Kasireddy V, Akinci B, Fieguth P. ...
  • Liu Y-F, Cho S, Spencer BF, Fan J-S. Concrete crack ...
  • Anagnostopoulos I, Pătrăucean V, Brilakis I, Vela P. Detection of ...
  • Torok Matthew M, Golparvar-Fard M, Kochersberger Kevin B. Image-based automated ...
  • Khaloo A, Lattanzi D. Robust outlier detection and normal estimation ...
  • Powers D. What the f-measure doesn't measure. ArXiv:۱۵۰۳.۰۶۴۱۰. ۲۰۱۴ ...
  • David Olson DD. Advanced data mining techniques. Springer. ۲۰۰۸ ...
  • Blair DC. Information retrieval, ۲nd ed. C.J. Van Rijsbergen. London: ...
  • Bishop C. Pattern recognition and machine learning: Springer-Verlag New York ...
  • Fan Z, Wu Y, Lu J, Li W. Automatic pavement ...
  • Mathavan S, Rahman M, Kamal K. Use of a Self-organizing ...
  • Li L, Lijun S, Guobao N, Shengguang T. Automatic pavement ...
  • Salman M, Mathavan S, Kamal K, Rahman M. Pavement crack ...
  • Oliveira H, Correia PL. Automatic road crack detection and characterization. ...
  • Prateek P, Kristin D, Nenad G, Basily B. Computer-vision based ...
  • Amarasiri S, Gunaratne M, Sarkar S. Modeling of crack depths ...
  • Saar T, Talvik O. Automatic asphalt pavement crack detection and ...
  • Bray J, Verma B, Xue L, He W. A neural ...
  • Hoang N-D, Nguyen Q-L, Bui DT. Image processing based classification ...
  • Qiu S, Wang W, Wang S, Wang KCP. Methodology for ...
  • Zhang L, Yang F, Zhang YD, Zhu YJ. Road crack ...
  • Zhang A, Wang KCP, Li B, Yang E, Dai X, ...
  • Shahabian Moghaddam R, Mohammadzadeh Moghaddam A, Sahaf SA, Pourreza Hr. ...
  • Zakeri H, Nejad FM, Fahimifar A. Image based techniques for ...
  • Yang Y-S, Yang C-M, Huang C-W. Thin crack observation in ...
  • Adhikari RS, Moselhi O, Bagchi A. Image-based retrieval of concrete ...
  • Yu Y-b, Li W-h, Zhang J-q, Nie J-g. Bridge crack ...
  • Oh J-K, Jang G, Oh S, Lee JH, Yi B-J, ...
  • Abdel-Qader I, Abudayyeh O, Kelly Michael E. Analysis of edge-detection ...
  • German S, Jeon J-S, Zhu Z, Bearman C, Brilakis I, ...
  • Jahanshahi MR, Masri SF. Adaptive vision-based crack detection using ۳D ...
  • Talab AMA, Huang Z, Xi F, HaiMing L. Detection crack ...
  • Lattanzi D, Miller Gregory R. Robust automated concrete damage detection ...
  • Alam SY, Loukili A, Grondin F, Rozière E. Use of ...
  • Yiyang Z. The design of glass crack detection system based ...
  • Fujita Y, Hamamoto Y. A robust automatic crack detection method ...
  • Wang P, Huang H. Comparison analysis on present image-based crack ...
  • Lins RG, Givigi SN. Automatic crack detection and measurement based ...
  • Jahanshahi M, Masri S, W. Padgett C, S. Sukhatme G. ...
  • Hamrat M, Boulekbache B, Chemrouk M, Amziane S. Flexural cracking ...
  • H. Peters W, F. Ranson W. Digital imaging techniques in ...
  • Sutton M, J. Wolters W, Iii Peters WH, F. Ranson ...
  • Shan B, Zheng S, Ou J. A stereovision-based crack width ...
  • Valença J, Dias-da-Costa D, Júlio E, Araújo H, Costa H. ...
  • Valença J, Dias-da-Costa D, Júlio ENBS. Characterisation of concrete cracking ...
  • Sinha SK, Fieguth PW. Automated detection of cracks in buried ...
  • Iyer S, Sinha SK. A robust approach for automatic detection ...
  • Nghiem H-L, Al Heib M, Emeriault F. Method based on ...
  • Jalili Ghazizade M, Abduli MA, Safari E, Gatmiri B. Development ...
  • Li S, Zhao X. Image-based concrete crack detection using convolutional ...
  • Cha Y-J, Choi W, Büyüköztürk O. Deep learning-based crack damage ...
  • Kim H, Ahn E, Shin M, Sim S-H. Crack and ...
  • Hoskere V, Narazaki Y, Hoang TA, Spencer BF. Vision-based structural ...
  • Kim H, Ahn E, Cho S, Shin M, Sim S-H. ...
  • Prasanna P, Dana KJ, Gucunski N, Basily BB, La HM, ...
  • Zhang W, Zhang Z, Qi D, Liu Y. Automatic crack ...
  • Ranjan R, Khan AR, Parikh C, Jain R, Mahto RP, ...
  • Bhat NN, Kumari K, Dutta S, Pal SK, Pal S. ...
  • Saranath KM, Sharma A, Ramji M. Zone wise local characterization ...
  • Rajashekar R, Rajaprakash BM, Upadhya S. Assessment of friction stir ...
  • You D, Gao X, Katayama S. Monitoring of high-power laser ...
  • Ghosh A, Chattopadhyaya S, Das R, Sarkar P. Assessment of ...
  • Zapata J, Vilar R, Ruiz R. Performance evaluation of an ...
  • Anouncia SM, Saravanan R. A knowledge model for gray scale ...
  • Shafeek HI, Gadelmawla ES, Abdel-Shafy AA, Elewa IM. Assessment of ...
  • Murthy V, Ullegaddi K, Mahesh B, Rajaprakash BM. Application of ...
  • Yeum CM, Dyke SJ. Vision-based automated crack detection for bridge ...
  • Jahanshahi MR, Masri SF. Parametric performance evaluation of wavelet-based corrosion ...
  • Son H, Hwang N, Kim C, Kim C. Rapid and ...
  • Xu Y, Bao Y, Chen J, Zuo W, Li H. ...
  • Xu Y, Li S, Zhang D, Jin Y, Zhang F, ...
  • Valeti B, Pakzad S. Automated detection of corrosion damage in ...
  • Zhu Z, Brilakis I. Machine vision-based concrete surface quality assessment. ...
  • Dawood T, Zhu Z, Zayed T. Computer vision–based model for ...
  • Adhikari RS, Moselhi O, Bagchi A, Rahmatian A. Tracking of ...
  • Karaşahin M, Saltan M, Çetin S. Determination of seal coat ...
  • Kabir S. Imaging-based detection of AAR induced map-crack damage in ...
  • Saeediyeh P, Arezoomand S, Sebt MH, Golroo A. Manage patches ...
  • Firoozi Yeganeh S, Mahmoudzadeh A, Golroo A, Jahanshahi M. Using ...
  • Naderi H, Zakaee Ashtiyani M. Automatic evaluation of asphalt pavement ...
  • Paal S, Jeon J-S, Brilakis I, Desroches R. Automated damage ...
  • Fukuda Y, Feng MQ, Narita Y, Kaneko S, Tanaka T. ...
  • Bridge J, Mechitov K, Sim S-H, Nagayama T, Jang S, ...
  • Cho S, Giles RK, Spencer Jr BF. System identification of ...
  • Lattanzi D, Miller Gregory R, Eberhard Marc O, Haraldsson Olafur ...
  • Spencer BF, Hoskere V, Narazaki Y. Advances in computer vision-based ...
  • Ye XW, Dong CZ, Liu T. A Review of machine ...
  • Feng D, Feng MQ. Computer vision for SHM of civil ...
  • Hoult NA, Andy Take W, Lee C, Dutton M. Experimental ...
  • Dutton M, Take WA, Hoult NA. Curvature monitoring of beams ...
  • Sutton M, Orteu J-J, Schreier H. Image correlation for shape, ...
  • Pan B, Qian K, Xie H, Asundi A. Topical review: ...
  • Yang Y, Dorn C, Mancini T, Talken Z, Kenyon G, ...
  • Yoon H, Elanwar H, Choi H, Golparvar-Fard M, Spencer Jr ...
  • Furukawa Y, Curless B, Seitz SM, Szeliski R. Towards Internet-scale ...
  • Pan B, Tian L, Song X. Real-time, non-contact and targetless ...
  • Lee JJ, Shinozuka M. A vision-based system for remote sensing ...
  • Banks J, Marimon Giovannetti L, Soubeyran X, Wright AM, Turnock ...
  • Ferrer B, Acevedo P, Espinosa J, Mas D. Targetless image-based ...
  • Li G, Tan Q, Sun Q, Hou Y. Normal strain ...
  • Henke K, Pawlowski R, Schregle P, Winter S. Use of ...
  • Uhl T, Kohut P, Holak K, Krupinski K. Vision based ...
  • Majidi A, Amir Hosseini M. The method of image processing ...
  • Tarighat A, Dadar E. Application of the new method for ...
  • Dong CZ, Ye XW, Jin T. Identification of structural dynamic ...
  • Lee J, Lee K-C, Cho S, Sim S-H. Computer vision-based ...
  • Park J-W, Moon D-S, Yoon H, Gomez F, Spencer Jr. ...
  • Abdelbarr M, Chen Y, Jahanshahi M, Masri S, Shen W, ...
  • Ye XW, Yi T-H, Dong CZ, Liu T. Vision-based structural ...
  • Feng D, Feng MQ. Vision-based multipoint displacement measurement for structural ...
  • Xu Y, Brownjohn J, Kong D. A non-contact vision-based system ...
  • Mas D, Ferrer B, Acevedo P, Espinosa J. Methods and ...
  • Chen Z, Li H, Bao Y, Li N, Jin Y. ...
  • Hoskere V, Park J-W, Yoon H, Spencer Billie F. Vision-based ...
  • Helfrick MN, Niezrecki C, Avitabile P, Schmidt T. ۳D digital ...
  • Mahal M, Blanksvärd T, Täljsten B, Sas G. Using digital ...
  • Ghorbani R, Matta F, Sutton MA. Full-field deformation measurement and ...
  • Zhou Z, Gong J, Guo M. Image-based ۳d reconstruction for ...
  • Yoneyama S, Ueda H. Bridge deflection measurement using digital image ...
  • Farhang SH, Rezayfar O, Sharbatdar Mk, Ahmadyfard A. Rapid estimation ...
  • Zhu Z, Brilakis I. Concrete column recognition in images and ...
  • Rashidi A, Sigari M-H, Maghiar M, Citrin Ds. An analogy ...
  • Cha Y-J, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. ...
  • Hoskere V, Narazaki Y, Hoang T, Spencer, Jr. Towards automated ...
  • Lu R, Brilakis I, Middleton CR. Detection of structural components ...
  • Gao Y, Mosalam KM. Deep transfer learning for image-based structural ...
  • Liang X. Image-based post-disaster inspection of reinforced concrete bridge systems ...
  • Narazaki Y, Hoskere V, Hoang TA, Fujino Y, Sakurai A, ...
  • Oliveira A, Jr LR. Evaluation of the superficial texture of ...
  • Uslu B, Golparvar-Fard M, de la Garza Jesus M. Image-Based ...
  • Shirvani GR. Analysis and determination of the parameters of hot ...
  • Moghadas Nejad F, Karimi N, Zakeri H. Providing a new ...
  • Moghadas Nejad F, Makhmalbaf MM, Zakeri H. Improving the result ...
  • Moghaddas Nejad F, Zare Motekhases F, Mehrabi A, Zakeri H. ...
  • Nili M, Aslani M. Using image processing to evaluate the ...
  • Keymanesh MR, Nasrollahtabar A, Shahryari N. Internal structure features of ...
  • González-Aguilera D, Gómez-Lahoz J. Dimensional analysis of bridges from a ...
  • Tsai Y, Hu Z, Wang Z. Vision-based roadway geometry computation. ...
  • Payesteh M, Lashkar-Ara B, Fathi Moghadam M. An Estimation of ...
  • Li L, Lijun S, Guobao N, Shengguang T. Automatic pavement ...
  • Liu Y, Cho S, Spencer B, Fan J. Automated assessment ...
  • Nishikawa T, Yoshida J, Sugiyama T, Fujino Y. Concrete crack ...
  • Talebi kojidi M, Rezayfar O. Simulation of the effects of ...
  • Farhang SH, Rezayfar O, Sharbatdar MK, Ahmadifard A. Identification and ...
  • Hu Y, Zhao C-x. A novel LBP based methods for ...
  • Koch C, Brilakis I. Pothole detection in asphalt pavement images. ...
  • Li L, Sun L-j, Tan S-g, Ning G-b. An efficient ...
  • Zou Q, Cao Y, Li Q, Mao Q, Wang S. ...
  • Ahmad NFA, Kaamin M, Razali S. The application of micro ...
  • Ellenberg A, Branco L, Krick A, Bartoli I, Kontsos A. ...
  • Gheisari M, Rashidi A, Esmaeili B. Using unmanned aerial systems ...
  • Morgenthal G, Hallermann N. Quality Assessment of unmanned aerial vehicle ...
  • Sankarasrinivasan S, Balasubramanian E, Karthik K, Chandrasekar U, Gupta R. ...
  • Yoon H, Hoskere V, Park J-W, Spencer B. Cross-correlation-based structural ...
  • Kim B, Cho S. Automated vision-based detection of cracks on ...
  • Chen F, Jahanshahi MR. NB-CNN: Deep learning-based crack detection using ...
  • Khormani M, Kalat jari V, Aghayan I, Ahmadifard A. Finite ...
  • Khaloo A, Lattanzi D. Automatic detection of structural deficiencies using ...
  • Stent S, Gherardi R, Stenger B, Soga K, Cipolla R. ...
  • DeGol J, Golparvar-Fard M, Hoiem D. Geometry-informed material recognition. ArXiv:۱۶۰۷.۰۵۳۳۸. ...
  • Atha DJ, Jahanshahi MR. Evaluation of deep learning approaches based ...
  • de Oliveira Alexandre L, Prudêncio Luiz R. Evaluation of the ...
  • Schumacher T, Shariati A. Monitoring of structures and mechanical systems ...
  • Ye XW, Yi T-H, Dong C-Z, Liu T, Bai H. ...
  • Celik O, Dong C-Z, Catbas FN. Measurement of human loads ...
  • Dai F, Rashidi A, Brilakis I, Vela P. Generating the ...
  • Dai F, Rashidi A, Brilakis I, Vela P. Comparison of ...
  • Rashidi A, Brilakis I, Vela P. Generating absolute-scale point cloud ...
  • Rashidi A, Brilakis I, Vela PA. Monocular videogrammetry for generating ...
  • Golparvar-Fard M, Bohn J, Teizer J, Savarese S, Peña-Mora F. ...
  • Guldur Erkal B, Hajjar JF. Laser-based surface damage detection and ...
  • Lague D, Brodu N, Leroux J. Accurate ۳D comparison of ...
  • Xiong X, Adan A, Akinci B, Huber D. Automatic creation ...
  • Bügler M, Borrmann A, Ogunmakin G, Vela PA, Teizer J. ...
  • Ordóñez C, Arias P, Herráez J, Rodríguez J, Martín MT. ...
  • Ghanta S, Tanja K, Lee S. Wavelet domain detection of ...
  • Lord J, McCormick N. Digital image correlation for structural measurements. ...
  • Malesa M, Kujawinska M. Deformation measurements by digital image correlation ...
  • Rezapour A, Saghravani S.F, Ahmadifard A. Study of saltwater intrusion ...
  • Shen H-K, Chen P-H, Chang L-M. Automated steel bridge coating ...
  • Mataei b, Moghaddasnezhad F, Zakeri H. Presentation of a new ...
  • Hajiali m, Moghaddasnezhad F, Zakeri H. Providing a new index ...
  • Younesi A, Rezaeifar O, Gholhaki M, Esfandiari A. Damage detection ...
  • Hanteh M, Rezaifar O, Gholhaki M. Selecting the appropriate wavelet ...
  • Hanteh M, Rezaifar O. Damage detection in precast full panel ...
  • Khanahmadi M, Rezayfar O, Gholhaki M. Comparative study on steel ...
  • Khanahmadi M, Rezayfar O, Gholhaki m. Damage detection in steel ...
  • Naderpour H, Fakharian P. A synthesis of peak picking method ...
  • Heidari A, Raeisi J, Pahlavan Sadegh S. A New Method ...
  • Jahangir H, Esfahani MR. Structural damage identification based on modal ...
  • Seyedi S, Keyhani A, Jahangir H. An energy-based damage detection ...
  • Nadjafi S, Ghodrati Amiri G, Zare Hosseinzadeh A, Seyed Razzaghi ...
  • Daneshvar MH, Gharighoran A, Zareei SA, Karamodin A. Damage detection ...
  • Kavousi M, Khatibinia M, Jahangir H. Use of contourlet transform ...
  • نمایش کامل مراجع