Investigation of Evolutionary Optimization Algorithms for Estimating Sandstone Compressive Strength

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 183

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GEOTEC05_088

تاریخ نمایه سازی: 5 شهریور 1403

چکیده مقاله:

Directly determining rock compressive strength is both laborious and expensive. As a result, indirectestimation methods, such as artificial neural networks, are employed. Input parameters, such as quartzcontent, dry density, and Brazilian tensile strength, have been used to predict the compressive strength ofsandstone. genetic algorithm (GA) and particle swarm optimization (PSO) were selected to improvenetwork training using evolutionary optimization algorithms' effectiveness. The results demonstrate thatthe PSO model achieved the best estimation performance with an MSE of ۰.۰۲۱۴ and R of ۰.۹۵. Thelinear regression model exhibited inferior performance with an R of ۰.۸۷.

نویسندگان

Somaie Jolfaei

Department of Civil Engineering, Faculty of Engineering, University of Zanjan

Ali Lakirouhani

Department of Civil Engineering, Faculty of Engineering, University of Zanjan