انتخاب ترکیب بهینه ویژگی های بافتی به روش ژنتیک، به منظور طبقه بندی تصاویر با قدرت تفکیک مکانی بالا
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 96
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JGCE-2-2_011
تاریخ نمایه سازی: 28 مرداد 1403
چکیده مقاله:
پیشینه و اهداف: بافت تصویر، به عنوان داده ای ارزشمند توسط ذهن انسان برای تفسیر تصویر استفاده می شود. کمی سازی بافت تصویر روشی کاربردی برای استخراج روابط مکانی بین پیکسل های تصویر است. از ویژگی های بافتی تولید شده از تصویر در کنار ویژگی های طیفی تصویر می توان برای بهبود کیفیت طبقه بندی استفاده کرد. با توجه به تنوع روش های کمی سازی بافت تصویر، انتخاب ویژگی های بهینه برای هر تصویر به صورت مستقیم روی دقت استخراج اطلاعات موثر است. الگوریتم ژنتیک به عنوان یکی از رو ش های بهینه سازی در کاربردهای مختلف استفاده می شود.روش ها : در این مقاله دو روش انتخاب ویژگی بر پایه الگوریتم ژنتیک برای انتخاب ویژگی های بافتی تصویر ارائه شده است. در روش نخست، الگوریتم ژنتیک برای انتخاب بهترین ترکیب با طول متغییر از ویژگی های بافتی در دو حالت ورودی از کل فضای ویژگی و ورودی از فضای پالایش شده، تعریف شده است. در روش دوم الگورتیم ژنتیک برای انتخاب عداد متغییر ویژگی های طیفی در دو حالت انتخاب از بین کل ویژگی ها و انتخاب از بین ویژگی های گزینش شده به کار رفته شده است.یافته ها: نتایج، نشان می دهد که ترکیب بهینه الزاما شامل ویژگی هایی که به تنهایی توانمندی بهتری در بهبود دقت طبقه بندی دارند، نمی شود. الگوریتم های پیشنهادی منجر به دقت بهتر، تعداد ویژگی منتخب کمتر و زمان محاسباتی کمتری نسبت به الگوریتم ساده ژنتیک است. از روش های پیشنهادی بسته به ابعاد تصویر، تعداد ویژگی های بافتی تولید شده و تعداد داده های آموزشی و چک می توان استفاده کرد. روش دوم زمان آماده سازی اولیه بیشتری داشته و به دلیل افزایش تصاعدی زمان محاسباتی برای تصاویری با تعداد باند طیفی و تعداد پیکسل های کنترل و چک و تعداد ویژگی بافتی کمتر قابل به کارگیری است. روش نخست برای تصاویری با ابعاد بزرگ و تعداد داده های آموزشی و چک بیشتر قابل استفاده است ولی برای رسیدن به دقت بهینه، تعداد ویژگی منتخب بیشتری را ارائه می دهد.نتیجه گیری: اجرای روش های پیشنهادی بر روی سه مجموعه داده ورودی، منجر به افزایش دقت میانگین طبقه بندی بین ۷/۷ تا ۴۸/۵۰ درصد نسبت به طبقه بندی طیفی و حفظ دقت تا افزایش ۶/۵ درصدی نسبت به ژنتیک ساده ولی با تعداد نصف تا یک سوم ویژگی های منتخب و کاهش ۵۰ درصدی زمان بهینه سازی گردید.
کلیدواژه ها:
نویسندگان
حامد عاشوری
گروه مهندسی نقشه برداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :