تهیه نقشه نوع محصول کشاورزی از سری زمانی تصاویر لندست-۸ با استفاده از روش های یادگیری ماشین (مطالعه موردی: مرودشت استان فارس)
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 81
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GEP-35-2_003
تاریخ نمایه سازی: 16 مرداد 1403
چکیده مقاله:
چکیدهیکی از اولویت های مهم وزارت جهاد کشاورزی، تهیه نقشه نوع محصول کشاورزی برای تخمین میزان سطح زیرکشت محصولات استراتژیک و برآورد سالیانه میزان تولید آنهاست. در دهه های اخیر، فناوری سنجش از دور به دلیل تهیه تصاویر و داده های به هنگام با تفکیک پذیری های متنوع مکانی، زمانی و طیفی و با بهره گیری از الگوریتم های یادگیری ماشین بهبودیافته در تخمین میزان سطح زیرکشت محصولات کارایی زیادی را نشان داده است. در پژوهش حاضر با استفاده از سری زمانی تصاویر ماهواره لندست-۸ و الگوریتم های یادگیری ماشین پیشرفته یک چهارچوب تهیه نقشه نوع محصول کشاورزی مرودشت استان فارس ارائه شد. الگوریتم های به کار گرفته شده شامل الگوریتم درخت تصمیم، جنگل تصادفی، جنگل دورانی، ماشین بردار پشتیبان و آنالیز انحراف زمانی پویا بود. نتایج نشان داد که روش های آنالیز انحراف زمانی پویا و جنگل تصادفی نسبت به روش های دیگر کارایی بسیار بیشتری (با افزایش دقت کلی به میزان ۱۰% تا ۱۲% بیشتر) در تهیه نقشه نوع محصول کشاورزی منطقه مطالعه شده داشتند. همچنین، در این پژوهش قابلیت باندهای ۲ تا ۵ ماهواره لندست-۸ در شناسایی کارا و مطمئن همه محصولات این منطقه با استفاده از روش های مذکور اثبات شد.
کلیدواژه ها:
هیه نقشه نوع محصول کشاورزی ، تخمین سطح زیرکشت ، ماهواره لندست-۸ ، یادگیری ماشین ، جنگل تصادفی ، ماشین بردار پشتیبان ، آنالیز انحراف زمانی پویا ، سنجش از دور
نویسندگان
ایمان خسروی
استادیار گروه مهندسی نقشه برداری، دانشکده مهندسی عمران و حمل و نقل، دانشگاه اصفهان، اصفهان، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :