Topic Word Set-Based Text Clustering
محل انتشار: هفتمین کنفرانس بین المللی تجارت الکترونیک در کشورهای در حال توسعه با رویکرد بر امنیت ECDC2013
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,634
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECDC07_047
تاریخ نمایه سازی: 9 تیر 1392
چکیده مقاله:
Clustering is the task of grouping related and similar data without any prior knowledge about the labels. In some real world applications, we face huge amounts of unstructuredtextual data with no organization. In these situations, clustering is a primitive operation that needs to be done to help future e-commerce tasks. Clustering can be used to enhancedifferent e-commerce applications like recommender systems, customer relationshipmanagement systems or personal assistant agents. In this paper we propose a new method for text clustering, by constructing a term correlation graph, and then extracting topic wordsets from it and finally, categorizing each document to its related topic with the help of a classification algorithm like SVM. This method provides a natural and understandable description for clusters by their topic word sets, and it also enables us to decide the clusterof documents only when needed and in a parallel fashion, thus significantly reducing the offline processing time. Our clustering method also outperforms the well-known k-means clustering algorithm according to clustering quality measures.
کلیدواژه ها:
نویسندگان
Amir Mehdi Ghazifard
E-Learning Department,University of Isfahan, Isfahan, Iran
Mohammadreza Shams
ECE Department,University of Tehran, Tehran, Iran
Zeinab Shamaee
ECE Department,Isfahan University of Technology, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :