Blasted muckpile modeling in open pit mines using an artificial neural network designed by genetic algorithm
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-58-2_010
تاریخ نمایه سازی: 21 تیر 1403
چکیده مقاله:
The shape of a blasted rock mass, or simply muckpile, affects the efficiency of loading machines. Muckpile is defined with two main parameters known as throw and drop, while several blasting parameters will influence the muckpile shape. This paper studies the prediction of muckpile shape in open-pit mines by applying an artificial neural network designed by a genetic algorithm. In that regard, a genetic algorithm has been used in preparing the neural network architecture and parameters. Moreover, input variables have been reduced using the principal component analysis. Finally, the best models for predicting throw and drop are determined. Analyzing the performance of the proposed models indicates their superiority in predicting muckpile shape. As a result, the Mean Squared Error of throw is ۰.۵۳ for train data and ۱.۲۴ for test data. While for the drop, the errors are ۰.۴۵ and ۰.۵۸ for the training and testing data. Furthermore, sensitivity analysis shows that specific-charge effects drop and throw more.
کلیدواژه ها:
نویسندگان
S. M. Mahdi Mirabedi
School of Mining, College of Engineering University of Tehran, Tehran, Iran.
Mehdi Rahmanpour
School of Mining, College of Engineering University of Tehran, Tehran, Iran.
Yousef Azimi
Research Centre for Environment and Sustainable Development, RCESD, Department of Environment, Tehran, Iran.
Hassan Bakhshandeh Amnieh
School of Mining, College of Engineering University of Tehran, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :