Sentiment Analysis on Student Performance Using Novel Ensemble Machine Learning Technique
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 161
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CSE-3-1_003
تاریخ نمایه سازی: 16 تیر 1403
چکیده مقاله:
Sentiment inquiry is used in a variety of sectors and has become one of the most popular subjects in academic exploration, with an expanding body of tasks. Maintaining a positive relationship between students requires academic input. Monitoring a student's progress is critical to their growth and helps instructors, parents, and guardians provide more support. Sentiment analysis is extensively used in a variety of fields, like business, social connections, and education. In an educational setting, this strategy allows students' feedback to be analysed, teachers' teaching performance to be monitored, and the learning experience to be improved. In the educational system, teacher assessment is critical to improving the learning experience in institutions. In this research, the authors propose a novel ensemble machine learning technique for figuring out the best ways to help students study in order to boost their academic achievements. This research assesses the effectiveness of techniques using accuracy, recall, precision, and the f-measure. In order to compare the methods used in this study, the authors used several machine learning approaches, like naive bayes, linear support vector machine, random forests, multilayer perceptron, stochastic gradient decent and logistic regression. When comparing several machine learning algorithms, the suggested ensemble technique produces the best results.
کلیدواژه ها:
نویسندگان
Neha Singh
Madan Mohan Malaviya University of Technology, Gorakhpur, India
Umesh Jaiswal
Madan Mohan Malaviya University of Technology, Gorakhpur, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :