DEVELOPMENT OF A YOLOv۸ MODEL FOR DOORDETECTION USING ARTIFICIAL INTELLIGENCE ANDPYTORCH
محل انتشار: دومین همایش بین المللی دستاوردهای نوین در فناوری اطلاعات، علوم کامپیوتر، امنیت، شبکه و هوش مصنوعی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 219
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
INDEXCONF02_005
تاریخ نمایه سازی: 11 تیر 1403
چکیده مقاله:
Doors serve as crucial gateways in our built environment, and theirprecise detection is essential for various applications, including robotics,autonomous navigation, and security systems. However, accuratelydetecting doors in diverse real-world settings poses challenges. Thispaper delves into the realm of door detection using deep learningtechniques, specifically focusing on the YOLOv۸ algorithm. The papercommences by highlighting the significance of door detection and thelimitations of traditional methods. It then explores YOLOv۸, a singlestageobject detection algorithm known for its speed and efficiency. Italso describes the chosen model configuration, training parameters, anddataset employed. The dataset consists of over ۴۷۰ images withcorresponding labels, and the model is trained using a pre-trainedYOLOv۸s model for faster convergence. Visualizations comparingpredicted door bounding boxes with original images are also included.Overall, this paper demonstrates the potential of YOLOv۸ for doordetection in diverse real-world scenarios. While further improvementsare possible, the presented approach offers a promising solution with itsspeed, efficiency, and adaptability.
کلیدواژه ها:
نویسندگان
Parsa Asasi Moghaddam
Iran University of Science and Technology