Advanced Machine Learning Approaches for Heart DiseasePrediction and Prevention with Comparative Analysis ofClassification Algorithms
محل انتشار: نخستین کنفرانس بین المللی هوش مصنوعی و چشم انداز آینده آن در علوم مهندسی برق ، کامپیوتر ، مکانیک و مخابرات
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 164
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCPM01_013
تاریخ نمایه سازی: 8 تیر 1403
چکیده مقاله:
Technology has been used more and more in recent years to help avoid awide range of illnesses. Heart problems are among the deadliest of them,resulting from a variety of causative variables. However, the start ofcardiac disease can be predicted and prevented with the appropriateknowledge and methods. In this work, we conduct a thoroughinvestigation of methods designed to categorize cardiac disease using adataset assembled in ۱۹۸۸. We use a variety of machine learningalgorithms, such as decision trees, naïve Bayes, logistic regression,random forests, support vector machines, extreme gradient boost, and knearestneighbors, to do this. We determine the individual performancesof these algorithms and determine which ones perform best by rigorouslyevaluating them. Additionally, we explore relevant debates regardingthese algorithms' operational preparedness for practical use. Our goal indoing this research is to make a small but meaningful contribution to thecurrent attempts to use technology to prevent heart disease and otherpreventive healthcare initiatives. Our results provide insight into thepractical factors necessary for the use of machine learning techniques inclinical settings, in addition to illuminating the effectiveness of differentapproaches in disease classification.
کلیدواژه ها:
نویسندگان
Mahboubeh Molavi Arabshahi
School of Mathematics and Computer Science, Iran University of Science and Technology
Arman Alaei
School of Mathematics and Computer Science, Iran University of Science and Technology