Simulation of rainfall-runoff process using geomorphology-based adaptive neuro-fuzzy inference system (ANFIS)

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 243

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CJES-18-2_002

تاریخ نمایه سازی: 31 خرداد 1403

چکیده مقاله:

This research was conducted to present an integrated rainfall-runoff model based on the physical characteristics of the watershed, and to predict discharge not only in the outlet, but also at any desired point within the basin. To achieve this goal, a matrix of hydro-climatic variables (i.e. daily rainfall and daily discharge) and geomorphologic characteristics such as upstream drainage area (A), mean slope of watershed (S) and curve number (CN) was designed and simulated using artificial intelligence techniques. Integrated Geomorphology-based Artificial Neural Network (IGANN) model with Root Mean Squared Error (RMSE) of ۰.۰۲۷۸۶ m۳ s-۱ and Nash-Sutcliffe Efficiency (NSE) of ۰.۹۴۰۳ and Integrated Geomorphology-based Adaptive Neuro-Fuzzy Inference System (IGANFIS) model with RMSE of ۰.۰۲۷۹۵ m۳ s-۱ and NSE of ۰.۹۴۴۶۷ were able to predict the discharge values of all hydrometric stations of the Chalus River watershed with a very low error and high accuracy. The results of cross validation stage confirmed the efficiency of models. Hydro-climatic variables and geomorphologic parameters selected in the study were: discharge of one day ago, discharge of two days ago, rainfall of current day and rainfall of one day ago and S, CN and A, respectively. In addition, the IGANN model shows superiority compared with the IGANFIS model.

کلیدواژه ها:

نویسندگان

Shabanali Gholami

Department of Natural Resources, Noor Branch, Islamic Azad University, Noor, Iran

Mehdi Vafakhah

Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

Kamal Ghaderi

Department of Natural Resources, Noor Branch, Islamic Azad University, Noor, Iran

Mohammad Reza Javadi

Department of Natural Resources, Noor Branch, Islamic Azad University, Noor, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Aalami, MT, Hosseinzadeh, H ۲۰۱۰, Modeling rainfall – runoff process ...
  • Asadi, S, Shahrabi, J, Abbaszadeh, P Tabanmehr, S ۲۰۱۳, A ...
  • Dastorani, MT, Sharifi Darani, H, Ali, T, Moghadam Nia, A ...
  • Eshagh Teimori, MA, Habibnejad, M, Kaviyan, A, Shahedi, K ۲۰۱۲, ...
  • Firat, M, Güngör, M ۲۰۰۷, River flow estimation using adaptive ...
  • Ghose, D, Panda, S, Swain, P ۲۰۱۳, Prediction and optimization ...
  • Green, I, Stephenson, D ۱۹۸۶, Criteria for comparison of single ...
  • Jacquin, AP, Shamseldin, AY ۲۰۰۶, Development of rainfall–runoff models using ...
  • Jacquin, AP, Shamseldin, AY ۲۰۰۹, Review of the application of ...
  • Jang, J-S ۱۹۹۳, ANFIS: adaptive-network-based fuzzy inference system, IEEE transactions ...
  • Jayawardena, A, Perera, E, Zhu, B, Amarasekara, J, Vereivalu, V ...
  • Kisi, O, Shiri, J, Tombul, M ۲۰۱۳, Modeling rainfall-runoff process ...
  • Kurtulus, B, Razack, M ۲۰۱۰, Modeling daily discharge responses of ...
  • Lohani, A, Kumar, R, Singh, R ۲۰۱۲, Hydrological time series ...
  • Moghimi, A, Mousavi Harami, R, Motamed, A, Ahmadi, H ۲۰۰۹, ...
  • Nash, JE, Sutcliffe, JV ۱۹۷۰, River flow forecasting through conceptual ...
  • Nayak, P, Sudheer, K, Jain, S ۲۰۰۷, Rainfall‐runoff modeling through ...
  • Nayak, PC, Sudheer, K, Rangan, D, Ramasastri, K ۲۰۰۴, A ...
  • Nourani, V, Kalantari, O ۲۰۱۰, Integrated artificial neural network for ...
  • Nourani, V, Kisi, Ö, Komasi, M ۲۰۱۱, Two hybrid artificial ...
  • Nourani, V, Komasi, M ۲۰۱۳, A geomorphology-based ANFIS model for ...
  • Rashidi, S, Vafakhah, M, Lafdani, EK, Javadi, MR ۲۰۱۶, Evaluating ...
  • Talei, A, Chua, LH ۲۰۱۲, Influence of lag time on ...
  • Talei, A, Chua, LHC, Wong, TS ۲۰۱۰, Evaluation of rainfall ...
  • Vafakhah, M ۲۰۱۲, Application of artificial neural networks and adaptive ...
  • Wang, W-C, Chau, K-W, Cheng, C-T, Qiu, L ۲۰۰۹, A ...
  • نمایش کامل مراجع