Reduction of Insolvency Risk and Total Costs in Banking Sector using Partners Selection Approach with Genetic Algorithm and Multilayer Perceptron Neural Network
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 8
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 140
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-8_017
تاریخ نمایه سازی: 23 خرداد 1403
چکیده مقاله:
Banking, a vital economic pillar worldwide, thrives with effective management, aiding economic growth. Mitigating risks and addressing cost control are key challenges. Prioritizing strategies to enhance performance in both risk management and cost efficiency is crucial for the banking sector's success and economic stability. One approach is to select partners in such a way that the risk of bank insolvency and total costs are reduced, and the capital adequacy of the bank is increased. So, in this work, we first created a mathematical model to achieve the above goals in the field of banking using the approach of selecting partners. In this model, three objective functions are considered for the optimal selection of partners, two of which aim to minimize risk and cost, and the last objective is to maximize capital adequacy. To solve this multi-objective model, we implemented an integrated intelligent system. A combination of a multi-objective genetic algorithm and a neural network was used in this system. A multilayer perceptron neural network is used to calculate the nondeterministic parameters based on the data from different periods. The proposed method was evaluated using a numerical example in MATLAB software. The obtained results and their comparison with one of the classic algorithms show the superiority and reliability of this intelligent system. Using this system, the optimal partners can be selected to achieve the set goals. The most important factors in the field of risk have been identified. Then, a meta-heuristic multi-objective algorithm (NSGA-II) along with an intelligent neural network system has been used to optimally select partners. According to this intelligent system, a suitable methodology is presented along with the optimization algorithm.
کلیدواژه ها:
banking ، Banks Insolvency Risk ، Selecting Partners ، multi-objective genetic algorithm ، multilayer perceptron neural network
نویسندگان
M. Azarbad
Department of Industrial Engineering, South Tehran Branch, Islamic Azad university, Tehran, Iran
A. A. Shojaie
Department of Industrial Engineering, South Tehran Branch, Islamic Azad university, Tehran, Iran
F. Abdi
Department of Industrial Engineering, South Tehran Branch, Islamic Azad university, Tehran, Iran
V. R. Ghezavati
Department of Industrial Engineering, South Tehran Branch, Islamic Azad university, Tehran, Iran
K. Khalili-Damghani
Department of Industrial Engineering, South Tehran Branch, Islamic Azad university, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :